Физическая энциклопедия - дозиметрия
Дозиметрия
излучений может служить моделью воды или мышечной ткани (у них близкие эффективные атомные номера) и ионизацию, пропорциональную поглощённой, легко измерить с помощью ионизационных камер, то измерение экспозиц. дозы было в течение длит. периода основой практич. Д., обслуживавшей гл. обр. медицину. В дальнейшем, с развитием реакторостроения (см.
ЯДЕРНЫЙ РЕАКТОР), ускорительной техники и производства радиоактивных нуклидов, появились новые мощные источники излучения, в т. ч. и отличного от рентгеновских и g-лучей. Это потоки нейтронов, ускоренных эл-нов, позитронов и тяжёлых заряж. ч-ц. Применения Д. распространились на службу радиац. безопасности, радиобиологию, радиац.
химию, яд. физику и радиац. технологию. Знание поглощённой энергии стало необходимо не только для воды и биол. ткани; воздух уже не мог рассматриваться как модель облучаемой среды. В этой связи в Д. утвердилось понятие поглощённой дозы как универсальной величины, применимой ко всем видам ионизирующего излучения и ко всем средам.
Однако при равных поглощённых дозах воздействие излучения зависит также от его вида и др. хар-к«качества» излучения. Количеств. хар-кой «качества» вначале служила ср. плотность ионизации, впоследствии уточнённая, как линейная передача энергии (ЛПЭ). Влияние ЛПЭ на радиац.эффекты наиболее подробно было исследовано в радиобиологии, где изучалась зависимость относительной биологической эффективности от ЛПЭ. Применительно к хронич. облучению людей (для обеспечения радиац. безопасности и нормирования условий труда) регламеитиров. зависимость такого рода зависимость коэфф. качества излучения от ЛПЭ.
Микродозиметрия. Передача энергии на микроуровне происходит малыми порциями и носит дискретный, стохастич. характер. Структуры, чувствительные к начальным стадиям радиац. эффектов, обычно имеют микроскопич. размеры и расположены также случайным образом. В этих условиях отклик на облучение должен определяться не столько поглощённой дозой, сколько распределением энерговыделений по чувствит.
структурам объекта. Исследование микроскопич. распределений передаваемой энергии для разных видов радиации, разных доз и объектов составляет предмет м и кр о д о з и м е т р и и. Последняя, в отличие от обычной Д., оперирующей с макроскопич. величинами, имеет дело с дискретно изменяющимися стохастич. величинами: с переданной в микрообъёме энергией ?, удельной энергией Z=?/m (m масса микрообъёма) и линейной энергией у. Акты передачи энергии внутри микрообъёма при попадании в него заряж. ч-цы рассматриваются как случайные события. Переданная в микрообъёме энергия равна разности между суммарной кинетич. энергией всех ионирующих ч-ц, попавших в данный микрообъём, и энергией ч-ц, покинувших его, в сумме с увеличением энергии внутри объёма за счёт яд.реакций. Ср. энергия по микрообъёмам рассматривается как «интегральная доза» в объёме. Стохастич. аналог ЛПЭ линейная энергия y=?/lср, где l ср. длина хорды рассматриваемого микрообъёма (линейная энергия измеряется в КэВXмкм--1). Распределение f(Z), соответствующее определённой величине поглощённой дозы D, может быть записано в виде /(Z, D).
Пусть, напр., гибель клеток при облучении наступает тогда, когда уд. энергия Z в чувствит. объёме клетки превосходит нек-рое критич. значение Z0. При этом доля S клеток, выживших после облучения: В более реалистич. случае, когда вероятность выживания клетки при поглощённой в её чувствительном объёме уд. энергии Z описывается, как y(Z): Ф-ция f(Z, D) может быть измерена или вычислена для разных микрообъёмов, а левые части соотношений найдены экспериментально.
.Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 526 | |
2 | 447 | |
3 | 441 | |
4 | 431 | |
5 | 430 | |
6 | 420 | |
7 | 417 | |
8 | 414 | |
9 | 411 | |
10 | 407 | |
11 | 405 | |
12 | 399 | |
13 | 388 | |
14 | 388 | |
15 | 387 | |
16 | 386 | |
17 | 385 | |
18 | 383 | |
19 | 382 | |
20 | 378 |