Физическая энциклопедия - модуляция света
Модуляция света
(модуляция оптического излучения), изменение во времени по заданному закону амплитуды (интенсивности), частоты, фазы или поляризации колебаний оптического излучения. Применяется для передачи информации с помощью оптич. сигналов или для формирования световых потоков с определ. параметрами. В зависимости от того, какая хар-ка подвергается изменению, различают амплитудную, фазовую, частотную или п о л я р и з а ц и о н н у ю М.
с. Для излучений видимого и ближнего ИК диапазонов (1014-8•1014 Гц) возможны частоты модуляции с верх. пределом до 1011-1012 Гц. Естественная М. с. происходит при испускании света элем. излучателями (атомами, ионами); независимость испускания такими излучателями фотонов и различие в частоте последних приводит к тому, что излучение содержит набор частот и флуктуирует по амплитуде, т. е. является амплитудно-частотно-модулпрованным. Естеств. частотная М. с. происходит также при неупругом рассеянии света на внутримолекулярных колебаниях (см. КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА) и на упругих волнах в конденсиров. средах (см. МАНДЕЛЬШТАМА БРИЛЛЮЭНА РАССЕЯНИЕ). В обоих случаях рассеянный свет содержит частоты, отличные от частоты падающего света.М. с., при к-рой преобразование излучения происходит в процессе его формирования непосредственно в источнике оптич. излучения, наз. в н у т р е н н е й М. с. При в н е ш н е й М. с. параметры излучения изменяют после его выхода из источника с помощью модуляторов света. Они характеризуются линейностью модуляц. хар-ки, динамич. диапазоном модулируемых частот, широкой полосой пропускания, потребляемой мощностью, световыми потерями.
Т. к. регистрация излучения, модулированного по частоте, фазе или поляризации, сопряжена с технич. трудностями, то на практике все эти виды М. с. преобразуют в амплитудную модуляцию либо непосредственно в модуляторе, либо с помощью спец. устройств, помещаемых перед приёмником излучения. Простейший модулятор для амплитудной М. с.
устройство, обеспечивающее периодич. прерывание светового потока. С этой целью используют колеблющиеся и вращающиеся заслонки, призмы, зеркала, а также вращающиеся диски с отверстиями, растры. Наиболее широко распространены вращающиеся диафрагмы с определ. сочетанием прозрачных и непрозрачных элементов. При вращении диафрагмы световой поток прерывается с частотой, равной произведению числа модулируемых элементов на частоту вращения диафрагмы.
М. с. осуществляют также на основе физ. эффектов, протекающих при распространении световых потоков в разл. средах (электрооптич., магнитооптич., упругооптич. эффекты). Для такой модуляции применяют управляемый двулучепреломляющий элемент из материала, обладающего естественной или наведённой анизотропией. Внеш. управляющее поле (напр.
, электрич. поле или поле упругих напряжений) приводит к изменению оптич. хар-к среды. Широкое распространение получили модуляторы на основе Поккельса эффекта, в к-рых фазовый сдвиг между обыкновенным и необыкновенным лучами линейно зависит от величины напряжённости электрич.поля. В модуляторах на основе Керра эффекта разность фаз колебаний обыкновенного и необыкновенного лучей пропорц. квадрату напряжённости электрич. поля. Для получения амплитудной М. с. электрооптич. в-во обычно помещают между скрещёнными поляризаторами. Важным св-вом электрооптич. эффекта явл. его малая инерционность, позволяющая осуществить М.
с. вплоть до частот 1012 Гц. В электрооптич. модуляторах ослабление модулирующего сигнала не зависит от интенсивности модулируемого света, и потому для увеличения глубины модуляции используют многократное прохождение света через один и тот же модулирующий сигнал. Примером может служить модулятор на основе интерферометра Фабри Перо, заполненный электрооптич.
средой. С целью увеличения объёма информации, переносимой световым лучом, используют п р о с т р а н с т в е н н у ю М. с., различную в каждой точке поперечного сечения пучка света. Осн. элемент пространств. модулятора света кристалл, на поверхности к-рого записывается определ. потенциальный рельеф; проходящий через кристалл пучок света оказывается промодулированным в каждой точке поперечного сечения в соответствии с потенциальным рельефом, записанным на кристалле, при этом модуляция может быть амплитудной и фазовой.Из многочисл. магнитооптич. эффектов для М. с. наибольшее применение нашёл Фарадея эффект в прозрачных в-вах. Периодически меняющееся магн. поле приводит к периодич. изменению угла вращения плоскости поляризации света, прошедшего через магнитооптич. элемент, помещённый в магн. поле. Угол поворота плоскости поляризации пропорц.
длине пути света в в-ве и при достаточной прозрачности среды может быть сделан сколь угодно большим. Важной особенностью магнитооптич. модуляторов явл. постоянство коэфф. Удельного вращения плоскости (Верде постоянная) в ИК диапазоне длин волн. Это повышает конкурентоспособность магнитооптич. устройств при больших длинах волн оптич.
излучения по сравнению с электрооптическими, в к-рых управляющее напряжение линейно возрастает с увеличением длины волны света. В магнитооптич. модуляторах света удаётся достичь глубины модуляции (см. МОДУЛЯЦИЯ КОЛЕБАНИЙ) 40% на частотах до 108 Гц.Для М. с. используют также искусств. оптич. анизотропию, к-рая возникает в иек-рых изотропных тв. телах под воздействием упругих напряжений (фотоупругость). При прохождении плоскополяризованного излучения через фотоупругую среду с наведённым двулучепреломлением излучение становится эллиптически поляризованным. Помещая такую среду между скрещенными поляризатором и анализатором, наблюдают амплитудную М.
с., аналогичную модуляции в электрооптич. средах. Применение таких модуляторов особенно целесообразно в ИК диапазоне, т. к. разность фаз колебаний необыкновенного и обыкновенного лучей =n3, где n показатель преломления, равный 4-6 для в-в, прозрачных в этом диапазоне. В основе работы акустооптич. модуляторов лежит явление дифракции света на ультразвуке (см.
ФОТОАКУСТИЧЕСКИЕ ЯВЛЕНИЯ). Методы, основанные на изменении поглощения света средой, обеспечивают лишь амплитудную М. с. При этом обязательно имеют место потери световой энергии в модулирующем устройстве. Электрич. управление поглощением света (полупроводниками) легко может быть получено либо при изменении концентрации свободных носителей или их подвижности, либо за счёт сдвига края полосы поглощения (Франца Келдыша эффект).
Внутр. М. с. осуществляют, используя для питания электрич. источников света переменное или пмпульсно-периодич. напряжение. Лампы накаливания при этом из-за своей инерционности дают заметную глубину модуляции лишь до частот =102 Гц; газоразрядные источники света менее инерционны и допускают модуляцию до частот 105 Гц (при глубине модуляции 5070%).
Появление лазеров вызвало интенсивное развитие методов внутр. М. с., основанных на управлении когерентным излучением за счёт изменения параметров лазера. При этом многие устройства, размещаемые внутри оптического резонатора лазера, применяются как внеш. модуляторы. Используя разл. способы внутр. модуляции, получают любой вид М.
с.: амплитудный, частотный, фазовый и поляризационный. Управление частотой излучения лазера достигается путём изменения добротности оптич. резонатора лазера, напр. изменения оптич. длины резонатора. С этой целью одно из зеркал резонатора закрепляют либо на магнитострикционном стержне (см. МАГНИТОСТРИКЦИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ), либо на пьезоэлементе и изменяют длину резонатора синхронно с модулирующим напряжением.
Тот же эффект может быть достигнут путём изменения показателя преломления среды, заполняющей резонатор. Для этого внутрь резонатора помещают электрооптич. кристалл. Частотную модуляцию излучения лазера можно получить также при наложении на активную среду магн. или электрич.полей (см. ЗЕЕМАНА ЭФФЕКТ? ШТАРКА ЭФФЕКТ), под действием к-рых происходит расщепление и смещение рабочих уровней атомов, ответственных за генерацию когерентного излучения. Изменяя величину коэфф. усиления, получают амплитудную модуляцию излучения лазера. Для этого воздействуют на разность населённостей активной среды, либо используя вспомогат.
возбуждение, приводящее к перераспределению населённостей. Амплитудная модуляция излучения может быть получена и при помощи модуляции тока разряда газовых или ПП лазеров, работающих в непрерывном режиме. Одним из методов управления когерентным излучением с целью получения импульсного излучения явл. модуляция величины обратной связи лазера, т. е. коэфф. отражения зеркал резонатора. С этой целью используют резонатор, одно из зеркал к-рого вращается с большой скоростью, и поэтому условия генерации выполняются лишь в короткие промежутки времени. Вместо зеркал часто используют вращающуюся призму полного внутр. отражения. Изменение величины обратной связи можно также получить, заменяя одно из зеркал на интерферометр Фабри Перо. Коэфф. отражения такого резонатора зависит от расстояния между зеркалами, меняя к-рое, можно модулировать интенсивность излучения и получать т. н. гигантские импульсы (см. ЛАЗЕР). Наконец, излучение лазеров можно модулировать, изменяя добротность оптич. резонатора путём введения потерь, величина к-рых управляется внеш. сигналом. Для этого используют модуляторы на основе электрооптич. и фотоупругих сред. Для т. н. пассивного управления добротностью используют метод, основанный на введении в резонатор элементов (растворов, стёкол), прозрачность к-рых изменяется под действием светового излучения. Такой вид модуляции (а в т о м о д у л я ц и и) широко используется для генерирования импульсов когерентного излучения нанои пикосекундного диапазонов. Модуляторы света широко применяются в технике и науч. исследованиях, напр. в оптической связи, в вычислит. технике. .Вопрос-ответ:
Самые популярные термины
1 | 526 | |
2 | 447 | |
3 | 441 | |
4 | 431 | |
5 | 430 | |
6 | 420 | |
7 | 417 | |
8 | 414 | |
9 | 411 | |
10 | 407 | |
11 | 405 | |
12 | 399 | |
13 | 388 | |
14 | 388 | |
15 | 387 | |
16 | 386 | |
17 | 385 | |
18 | 383 | |
19 | 382 | |
20 | 378 |