Поиск в словарях
Искать во всех

Физическая энциклопедия - радиоспектроскопия

 

Радиоспектроскопия

радиоспектроскопия

раздел физики, в рамках к-рого исследуются переходы между энергетич. уровнями квантовой системы, индуцированные эл.-магн. излучением радиодиапазона (см. РАДИОВОЛНЫ). Многообразие резонансных явлений, вызванных этими переходами, обусловливает популярность методов Р. Возникнув в экспериментах с молекулярными и атомными пучками (метод Раби), методы Р.

в дальнейшем распространились на в-ва в газообразном, жидком и тв. состояниях. Р. отличается от оптич. спектроскопии и инфракрасной спектроскопии специфич. особенностями: а) благодаря малым частотам w и, следовательно, малым энергиям квантов С›w в Р. исследуются квант. переходы между близко расположенными уровнями энергии. Это делает возможным изучение таких вз-ствий в в-ве, к-рые вызывают очень малые расщепления энергетич.

уровня, незаметные для оптич. спектроскопии. В Р. исследуются вращат. и инверсионные уровни; зеемановское расщепление уровней эл-нов и ат. ядер во внеш. и внутр. магн. полях (см. МИКРОВОЛНОВАЯ СПЕКТРОСКОПИЯ, ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС, ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС); уровни, образованные вз-ствием квадрупольных моментов ядер с внутр.

электрич. полями (см. ЯДЕРНЫЙ КВАДРУПОЛЬНЫЙ РЕЗОНАНС) и вз-ствием эл-нов проводимости с внеш. магн. полем (см. ЦИКЛОТРОННЫЙ РЕЗОНАНС). В магнитоупорядоченных средах наблюдается резонансное поглощение радиоволн, связанное с коллективным движением магн. моментов эл-нов (см. ФЕРРОМАГНИТНЫЙ РЕЗОНАНС, АНТИФЕРРОМАГНИТНЫЙ РЕЗОНАНС) Естеств.

ширина спектральной линии в радиодиапазоне очень мала (Dwо=w3). Наблюдаемая ширина Dw обусловлена разл. тонкими вз-ствиями в в-ве. Анализ ширины и формы линий позволяет количественно их оценивать, причём ширина и форма линии в Р. может быть измерена с очень большой точностью. в) Измерение длины волны l, характерное для оптич. спектроскопии, в Р. заменяется измерением частоты w, что осуществляется обычно радиотехнич. методами с большой точностью. Это позволяет измерять тонкие детали спектров, связанные с малыми сдвигами уровней систем, участвующих в поглощении радиоволн. Оптическая накачка и оптическая ориентация ат.

систем расширили содержание Р., позволив применить методику магн. резонанса к изучению основного и возбуждённых состояний атомов в газах при очень низких давлениях =10-6-10-3 мм рт. ст. (атомов, обладающих либо электронным, либо яд. парамагнетизмом). Оптич. накачка обогатила Р. новыми явлениями (многофотонные процессы, параметрич. резонанс и др.

), связанными с различными проявлениями вз-ствия радиочастотных полей с в-вом. Нелинейная Р. исследует отклик ат. системы на воздействие сильного радиочастотного поля. М е т о д ы и з м е р е н и й. Исследуемое в-во помещают в радиочастотное поле, амплитуду к-рого измеряют при резонансе и без него. Разность амплитуд определяет коэфф.

поглощения энергии в образце. Обычно используют стоячую волну в объёмном резонаторе (ЭПР, ЯМР, ЯКР и ЦР) или же бегущую волну в радиоволноводе. В случае резонатора образец помещают в пучность электрич. поля при наблюдении электрич. переходов л в пучность магн. поля, если наблюдаются магн. переходы. П р и м е н е н и е. Методами Р. можно определять структуру тв.

тел, жидкостей, молекул, магн. и квадрупольные моменты ат. ядер, симметрию поля окружения, валентность ионов, электрич. и магн. свойства атомов, молекул радикалов и др. Методы Р. применяются для качеств. и количеств анализа в-в. В Р. впервые наблюдалось вынужденное излучение, что привело к созданию квантовых генераторов и усилителей сначала в радио-, а затем в оптич. диапазонах (см. КВАНТОВАЯ ЭЛЕКТРОНИКА, ЛАЗЕР). .
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):