Физическая энциклопедия - тяготение
Тяготение
КВАНТОВЫЕ ЭФФЕКТЫ) Теория тяготения Ньютона. Первые высказывания о Т. как всеобщем св-ве тел относятся к античности. В 16 и 17 вв. в Европе возродились попытки доказательства существования взаимного тяготения тел. Нем. астроном И. Кеплер говорил, что «тяжесть есть взаимное стремление всех тел». Окончат. формулировка закона всемирного Т.
была сделана Ньютоном в 1687 в гл. его труде «Математические начала натуральной философии». Закон тяготения Ньютона гласит, что две любые материальные ч-цы с массами mA и mB притягиваются по направлению друг к другу с силой F, прямо пропорц. произведению масс и обратно пропорц. квадрату расстояния r между ними: F=GmAmB/r2 (1) (под материальными ч-цами здесь понимаются любые тела при условии, что их линейные размеры много меньше расстояния между ними).
Коэфф. пропорциональности G наз. гравитационной постоянной. Числовое значение G было определено впервые англ. учёным Г. Кавендишем в 1798, измерившим в лаборатории силы притяжения между двумя шарами. По совр. данным, (G=6,6745 (8) •10-8 см3/г•с2=6,6745 (8) •10-11 м3/кг•с2. Согласно закону (1), сила Т.зависит только от положения ч-ц в данный момент времени, т. е. гравитац. вз-ствие распространяется мгновенно. Чтобы вычислить силу Т., действующую на данную ч-цу со стороны мн. др. ч-ц (или непрерывно распределённого в-ва в нек-рой области пр-ва), следует векторно сложить силы, действующие со стороны каждой ч-цы (проинтегрировать в случае непрерывного распределения в-ва).
Т. о., в ньютоновской теории Т. справедлив суперпозиции принцип. Ньютон теоретически доказал, что сила Т. между двумя шарами конечных размеров со сферически симметричным распределением в-ва выражается также ф-лой (1), где mA и mB полные массы шаров, a r расстояние между их центрами.При произвольном распределении в-ва сила Т., действующая в данной точке на пробную ч-цу, может быть выражена как произведение массы этой ч-цы на вектор g, наз. напряжённостью поля Т. в данной точке. Чем больше по модулю g, тем сильнее поле Т. Из закона Ньютона следует, что поле Т.потенц. поле, т. е. его напряжённость g может быть выражена как градиент нек-рой скалярной величины j, наз.
гравитационным потенциалом: g=gradj. (2) Так, для ч-цы массы т потенциал поля Т. j=-Gm/r. (3) Если задано произвольное распределение плотности в-ва в пр-ве r=r(r), то можно вычислить гравитац. потенциал j этого распределения, а следовательно, и напряжённость гравитац. поля g во всём пр-ве.Потенциал j определяется как решение Пуассона уравнения: Dj = 4pGr, (4) где D=d2ldx2+d2/dy2+d2/dz2 оператор Лапласа. Гравитац. потенциал к.-л. тела или системы тел может быть записан в виде суммы потенциалов полей Т. частичек, слагающих тело или систему (принцип суперпозиции), т. е. в виде интеграла от выражения (3): Интегрирование производится по всей массе тела (или системы тел), r расстояние элемента массы dm от точки, в к-рой вычисляется потенциал.
Выражение (4а) явл. решением ур-ния Пуассона (4). Потенциал изолиров. тела (системы тел) определяется неоднозначно. Напр., к потенциалу можно прибавлять произвольную константу. Однако если потребовать, чтобы вдали от тела, на бесконечности, потенциал равнялся нулю, то потенциал определяется решением ур-ния Пуассона однозначно в виде (4а).
Ньютоновская теория Т. и ньютоновская механика явились величайшим достижением естествознания. Они позволяют описать с большой точностью обширный круг явлений, в т. ч. движение естеств. и искусств. тел в Солнечной системе, движения в др. системах небесных тел: в двойных звёздах, в звёздных скоплениях, в, галактиках.На основе теории тяготения Ньютона было предсказано существование планеты Нептун и спутника Сириуса и сделаны мн. др. предсказания, впоследствии блестяще подтвердившиеся. В астрономии закон тяготения Ньютона явл. фундаментом, на основе к-рого вычисляются движения и строение небесных тел, их эволюция, определяются массы небесных тел.
Точное определение гравитац. поля Земли позволяет установить распределение масс под её поверхностью (гравиметрич. разведка). Однако в нек-рых случаях Т. не может быть описано законом Ньютона. Необходимость обобщения закона тяготения Ньютона. Теория Ньютона предполагает мгновенное распространение Т. и уже поэтому не может быть согласована со спец.
теорией относительности (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ), утверждающей, что никакое вз-ствие не может распространяться со скоростью, превышающей скорость света в вакууме. Определим условия, ограничивающие применимость ньютоновской теории Т. Так как эта теория не согласуется со спец.теорией относительности, то её нельзя применять в тех случаях, когда гравитац. поля настолько сильны, что разгоняют движущиеся в них тела до скоростей порядка скорости света с. Скорость, до к-рой разгоняется тело, свободно падающее из бесконечности (предполагается, что там оно имело пренебрежимо малую скорость) до нек-рой точки, равна по порядку величины квадратному корню из модуля гравитац.
потенциала j в этой точке (предполагается, что на бесконечности j=0). Т.о., теорию Ньютона можно применять только в том случае, если |j|l=ct, где t характерное время движения в системе (напр., период обращения в системе двойной звезды). Действительно, согласно ньютоновской теории, поле Т. на любом расстоянии от системы определяется положением масс в тот же момент времени, в к-рый определяется поле, т.
е. изменения гравитац. поля, связанные с перемещением тел в системе, мгновенно передаются на любое расстояние r, что противоречит спец. теории относительности. Обобщение теории Т. на основе спец. теории относительности было сделано Эйнштейном в 1915-16. Новая теория была названа им общей теорией относительности (ОТО). Принцип эквивалентности.
Самой важной особенностью поля Т., известной в ньютоновской теории и положенной Эйнштейном в основу новой теории, является то, что Т. совершенно одинаково действует на разные тела, сообщая им одинаковые ускорения независимо от массы, хим. состава и др. св-в тел. Так, на поверхности Земли все тела падают под влиянием её поля Т. с одинаковым ускорением ускорением свободного падения.
Этот факт был установлен опытным путём итал. учёным Г. Галилеем и может быть сформулирован как принцип строгой пропорциональности гравитационной, или тяжёлой, массы mт, определяющей вз-ствие тела с полем Т. я входящей в закон (1), и инертной массы mи, определяющей сопротивление тела действующей на него силе и входящей во второй закон механики Ньютона.
Ур-ние движения тела в поле Т. записывается в виде: mиа=F=mтg, (6) где а ускорение, приобретаемое телом под действием напряжённости гравитац. поля д. Если mи пропорц. mт и коэфф. пропорциональности одинаков для любых тел, то можно выбрать ед. измерения так, что этот коэфф. станет равен единице, mи =mт; тогда массы сокращаются в ур-нии (6) и ускорение а не зависит от массы и равно напряжённости g поля Т., в согласии с законом Галилея. (О совр. опытном подтверждении этого фундам. факта см. ниже.) Т. о., тела разной массы 0 природы движутся в заданном поле Т. совершенно одинаково, если их нач. скорости одинаковы. Этот факт показывает глубокую аналогию между движением тел в поле Т. и движением тел в отсутствие Т., но относительно ускоренной системы отсчёта.
Так, в отсутствие Т. тела разной массы движутся по инерции прямолинейно и равномерно. Если наблюдать эти тела, напр., из кабины косм. корабля, к-рый движется вне полей Т. с пост. ускорением за счёт работы двигателя, то по отношению к кабине все тела будут двигаться с пост. ускорением, равным по величине и противоположным по направлению ускорению корабля.
Движение тел будет таким же, как падение с одинаковым ускорением в постоянном однородном поле Т. Силы инерции, действующие в ускоренном косм. корабле, летящем с ускорением, равным ускорению свободного падения у поверхности Земли, неотличимы от сил гравитации, действующих в истинном поле Т. в корабле, стоящем на поверхности Земли.
Следовательно, силы инерции в ускоренной системе отсчёта (связанной с косм. кораблём) эквивалентны гравитац. полю. Этот факт выражается принципом эквивалентности Эйнштейна. Согласно этому принципу, можно осуществить и процедуру, обратную описанной выше имитации поля Т. ускоренной системой отсчёта, а именно можно «уничтожить» в данной точке истинное гравитац.
поле введением системы отсчёта, движущейся с ускорением свободного падения. Так, хорошо известно, что в кабине косм. корабля, свободно (с выключенными двигателями) движущегося вокруг Земли в её поле Т., наступает состояние невесомости не проявляются силы Т. Эйнштейн предположил, что не только механич.движение, но и вообще все физ. процессы в истинном поле Т. и в ускоренной системе в отсутствии Т. протекают по одинаковым законам. Этот принцип получил назв. «сильного принципа эквивалентности», в отличие от «слабого принципа эквивалентности», относящегося только к законам механики. Теория тяготения Эйнштейна. Рассмотренная система отсчёта (косм.
корабль с работающим двигателем), движущаяся с пост. ускорением в отсутствии поля Т., имитирует только однородное гравитац. поле, одинаковое по величине и направлению во всём пр-ве. Но поля Т., создаваемые отд. телами, не таковы. Чтобы имитировать, напр., сферич. поле Т. Земли, нужны ускоренные системы с разл. направлением ускорения в разл.
точках. Наблюдатели в разных системах, установив между собой связь, обнаружат, что они движутся ускоренно друг относительно друга, и тем самым установят, что истинное поле Т. отсутствует. Т. о., истинное поле Т. не сводится просто к введению ускоренной системы отсчёта в обычном пр-ве, или, точнее, в пространстве-времени специальной теории относительности.
Эйнштейн показал, что если, исходя из принципа эквивалентности, потребовать, чтобы истинное гравитац. поле было эквивалентно локальным соответствующим образом ускоренным в каждой точке системам отсчёта, то в любой конечной области пространство-время окажется искривлённым неевклидовым. Это означает, что в трёхмерном пр-ве геометрия, вообще говоря, будет неевклидовой (сумма углов треугольника не равна я, отношение длины окружности к радиусу не равно 2я и т.
д.), а время в разных точках будет течь по-разному. Т. о., согласно теории тяготения Эйнштейна, истинное гравитац. поле есть проявление искривления (отличия геометрии от евклидовой) четырёхмерного пространства-времени. Следует подчеркнуть, что создание теории тяготения Эйнштейна стало возможным только после открытия неевклидовой геометрии Н.
И. Лобачевским, венг. математиком Я. Больяй, нем. математиками К. Гауссом и Б. Риманом. В отсутствии Т. в пространстве-времени спец. теории относительности движение тела по инерции изображается прямой линией, или, на матем. языке, экстремальной (геодезической) линией. Осн. идея эйнштейновской теории Т. заключается в том, что и в поле Т.
все тела движутся по геодезич. линиям в пространстве-времени, к-рое, однако, искривлено, и, следовательно, геодезич. линии не прямые. Наблюдатель воспринимает это движение как движение по искривлённым траекториям в трёхмерном пространстве-времени с перем. скоростью. В заданном поле Т. все тела независимо от их массы и состава при одинаковых начальных условиях будут двигаться по одним и тем же геодезич.
линиям (т. е. совершенно одинаково). Поэтому изменение скорости любых тел, т. е. их ускорение, в данном гравитац. поле одинаково. Одинаковость ускорений тел любой массы означает строгую пропорциональность тяжёлой и инертной масс (см. ф-лу (6)), и эти массы неотличимы. Кривизна пространства-времени создаётся источниками гравитац. поля.
При этом Т., т. е. искривление пространства-времени, определяется не только массой в-ва, слагающего тело, но и всеми видами энергии, присутствующими в системе. Эта идея явилась обобщением на случай теории Т. принципа эквивалентности массы (т) и энергии (?) спец. теории относительности: ?=mc2. Согласно этой идее, Т. зависит не только от распределения масс в пр-ве, но и от их движения, от давления и натяжений, имеющихся в телах, от эл.
-магн. поля и всех др. физ. полей. Наконец, в теории тяготения Эйнштейна обобщается вывод спец. теории относительности о конечной скорости распространения всех видов вз-ствия. Согласно Эйнштейну, изменения гравитац. поля распространяются в вакууме со скоростью с. Уравнения тяготения Эйнштейна. В спец. теории относительности в инерциальной системе отсчёта (и.
с. о.) квадрат четырёхмерного «расстояния» в пространстве-времени (интервала ds) между двумя бесконечно близкими событиями записывается в виде: ds2 = (cdt)2-dx2-dy2-dz2, (7) где t время, х, у, z прямоугольные декартовы координаты. Эта система координат наз. галилеевой. Выражение (7) имеет вид, аналогичный выражению для квадрата расстояния в евклидовом трёхмерном пр-ве в декартовых координатах.
Такое пространство-время называют плоским, евклидовым, или точнее, псевдоевклидовым, подчёркивая особый хар-р времени: в выражении (7) перед (cdt)2 стоит знак «+», в отличие от знаков «-» перед квадратами дифференциалов пространств. координат. Т. о., спец. теория относительности явл. теорией физ. процессов в плоском пространстве-времени (Минкоеского пространстве-времени).
Однако в нём не обязательно пользоваться декартовыми координатами, в к-рых интервал записывается в виде (7). Можно ввести любые криволинейные координаты. Тогда ds2 будет выражаться через эти новые координаты общей квадратичной формой: ds2=gikdxidxk (8) (i, k=0, 1, 2, 3), где х1, х2, х3 произвольные пространств.координаты, x0 временная координата (здесь и далее по дважды встречающимся индексам производится суммирование). С физ. точки зрения переход к произвольным координатам означает и переход от и. с. о. к системе, вообще говоря, движущейся с ускорением (причём в общем случае разным в разных точках), деформирующейся и вращающейся, и использование в этой системе недекартовых координат (и произвольно идущих часов).
Несмотря на кажущуюся сложность использования таких систем, практически они иногда оказываются удобными. Но в спец. теории относительности всегда можно пользоваться и галилеевой системой (7), в к-рой интервал записывается особенно просто (в этом случае в ф-ле (8) gik=0 при i?k, g00=l. gii=-1 при i=1, 2, 3). В ОТО пространство-время не плоское, а искривлённое.
В таком пространстве-времени (в конечных, не малых областях) нельзя ввести декартовы координаты, и использование криволинейных координат становится неизбежным. В конечных областях искривлённого пространства-времени ds2 записывается в криволинейных координатах в общем виде (8). Зная gik как ф-ции четырёх координат, можно определить все геом.
св-ва пространства-времени. Говорят, что величины gik, определяют метрику пространства-времени, а совокупность всех gik называют метрическим тензором. С помощью gik вычисляются темп течения времени в разных точках системы отсчёта и расстояния между точками в трёхмерном пр-ве. Так, ф-ла для вычисления бесконечно малого интервала времени dt по часам, покоящимся в системе отсчёта, имеет вид: dt=?(g00dx0/c).
При наличии поля Т. величина g00 в разных точках разная, следовательно, темп течения времени зависит от поля Т. Оказывается, что чем сильнее поле, тем медленнее течёт время по сравнению с течением времени для наблюдателя вне поля. Матем. аппаратом ОТО явл. тензорное исчисление; её законы записываются в произвольных криволинейных координатах (это означает, в частности, запись в произвольных системах отсчёта), как говорят, в ковариантном виде.
Осн. задача теории Т.определение гравитац. поля, что соответствует в ОТО нахождению геометрии пространства-времени. Эта последняя задача сводится к нахождению метрич. тензора gik. Ур-ния тяготения Эйнштейна связывают величины gik с величинами, характеризующими материю, создающую поле: плотностью, потоками импульса и т. п. Эти ур-ния записываются в виде: Rik-1/2gikR=(8pG/c4)Tik.
(9) Здесь Rik т. н. тензор Риччи, выражающийся через gik, его первые и вторые производные по координатам; R=Rikgik (величины gik определяются из ур-ний gikgkm =dmi, где dmiсимвол Кронекера: dmi=1 при i=m,dmi=0 при i?m); Тik тензор энергии-импульса материи, компоненты к-рого выражаются через плотность, потоки импульса и др.величины, характеризующие материю и её движение (под физ. материей подразумевается обычное в-во и физ. поля). Вскоре после создания ОТО Эйнштейн показал (1917), что существует возможность изменения ур-ний (9) с сохранением осн. принципов новой теории. Это изменение состоит в добавлении к правой части ур-ний (9) т. н. космологич. члена: Lgik.
Постоянная Л наз. космологич. постоянной, имеет размерность см-2. Целью этого усложнения теории была попытка Эйнштейна построить модель Вселенной, к-рая не изменяется со временем. Космологич. член можно рассматривать как величину, описывающую плотность энергии и давление (или натяжение) вакуума.Однако в сер. 20-х гг. А. А. Фридман показал, что ур-ния Эйнштейна без L-члена приводят к эволюционирующей (нестационарной) модели Вселенной, а амер. астроном Э. Хаббл открыл (1929) закон красного смещения для галактик, к-рое было истолковано как подтверждение этой модели. Идея Эйнштейна о статич. Вселенной оказалась неверной, и хотя уравнения с L-членом тоже допускают нестационарные решения для модели Вселенной, необходимость в L-члене отпала.
Следует подчеркнуть, что пока нет наблюдат. эксперим. или теор. оснований считать L отличной от нуля. Во всяком случае, если L?0, то согласно астрофиз. наблюдениям, её абс. величина чрезвычайно мала: |L| .Вопрос-ответ:
Самые популярные термины
1 | 526 | |
2 | 447 | |
3 | 441 | |
4 | 431 | |
5 | 430 | |
6 | 420 | |
7 | 417 | |
8 | 414 | |
9 | 411 | |
10 | 407 | |
11 | 405 | |
12 | 399 | |
13 | 388 | |
14 | 388 | |
15 | 387 | |
16 | 386 | |
17 | 385 | |
18 | 383 | |
19 | 382 | |
20 | 378 |