Философский словарь - измерение
Измерение
Для того чтобы результат И. был общезначим, в процессе И. необходимо соблюдать определенные правила И.
1. Правило эквивалентности: если физические значения измеряемых величин равны, то должны быть равны и их числовые выражения, символически: если Qi=Q2, то q,U = q2U.
2. Если физическое значение одной величины больше (меньше) физического значения другой величины, то числовое значение первой должно быть больше (меньше) числового выражения второй, символически: если Q1>Q2, то q1>Q2.
Знаки, стоящие между Q/ и Q2, не являются выражением обычных арифметических отношений, а представляют некоторые эмпирические соотношения между свойствами разных тел. Напр., если речь идет о весе двух тел, то знак "=" между Q/ и Q2 будет означать лишь то, что когда мы кладем одно тело на одну чашу весов, а др. тело на вторую чашу, то весы оказываются в равновесии. Знак " > " между Qi и Q2 означает, что одна чаша весов опустилась ниже другой.
3. Правило аддитивности: числовое значение суммы физических значений некоторой величины должно быть равно сумме числовых значений этой величины, символически: qU (Q1 + Q2) q1U + q2U.
В формулировке данного правила между Qi и (Q2 помещают знак " + ", обозначающий эмпирическую операцию соединения двух значений одной величины. Эту операцию следует отличать от арифметического сложения. Величины, соединение которых подчиняется указанному правилу, называются "аддитивными". Таковы, напр., масса, длина, объем в классической физике. Если соединить вместе два тела, то масса получившейся совокупности будет равна сумме масс этих тел. Величины, не подчиняющиеся указанному правилу, называются "неаддитивными". Примером неаддитивной величины может служить температура. Если соединить вместе два тела с температурой, скажем, 20°С и 50°С, то температура этой пары тел не будет равна 70°С. Существование неаддитивных величин показывает, что при обращении с количественными понятиями необходимо учитывать, какие конкретные свойства обозначаются такими понятиями, ибо эмпирическая природа этих свойств накладывает ограничения на операции, производимые с соответствующими количественными величинами.
4. Правило единицы И. Необходимо выбрать некоторое тело или легко воспроизводимый естественный процесс и охарактеризовать единицу И. посредством этого тела или процесса. Для температуры задают шкалу И., выбирая две крайние точки, напр., точку замерзания воды и точку ее кипения, и разделяют отрезок трубки между этими точками на определенное количество частей. Каждая такая часть является единицей И. температуры градусом. Единицей И. длины является метр, времени секунда. Хотя единицы И. выбираются произвольно, однако на их выбор накладываются определенные ограничения. Тело или процесс, избранные в качестве единицы И., должны сохранять неизменными свои размеры, форму, периодичность. Строгое соблюдение этих требований было бы возможно только для идеального эталона. Реальные же тела и процессы подвержены изменениям под влиянием окружающих условий. Поэтому в качестве реальных эталонов И. выбирают как можно более устойчивые к внешним воздействиям тела и процессы.
В 1960 на Генеральной конференции по мерам и весам была принята Международная система единиц физических величин (СИ). Эта система действует и в России (с 1982).
Карнап Р. Философские основания физики. М., 1971; Никифоров А.Л. Философия науки: история и методология. М., 1998.
А.Л. Никифоров
Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 877 | |
2 | 792 | |
3 | 771 | |
4 | 700 | |
5 | 621 | |
6 | 586 | |
7 | 564 | |
8 | 547 | |
9 | 546 | |
10 | 546 | |
11 | 510 | |
12 | 500 | |
13 | 492 | |
14 | 483 | |
15 | 480 | |
16 | 478 | |
17 | 459 | |
18 | 455 | |
19 | 452 | |
20 | 450 |