Энциклопедия Кольера - число
Число
Понятие числа в математике может относиться к объектам различной природы: натуральным числам, используемым при счете (положительным целым числам 1, 2, 3 и т.д.), числам, являющимся возможными результатами (идеализированных) измерений (это такие числа, как 2/3, корень из 3, их называют действительными числами), отрицательным числам, мнимым числам (скажем, к корню из минус 1) и к другим более абстрактным классам чисел, используемым в высших разделах математики (например, к гиперкомплексным и трансфинитным числам).
Число необходимо отличать от его символа, или обозначения, которое его представляет. Мы рассмотрим логические отношения между различными классами чисел (см. также Цифры И Системы Счисления). Элементарная арифметика оперирует с положительными целыми числами и нулем, с дробями, в известной мере с положительными действительными числами, такими как , и иногда с отрицательными действительными числами.Более сложные действия над отрицательными и мнимыми числами обычно принято относить к компетенции алгебры. Правила, осваиваемые при изучении арифметики, применимы без каких-либо ограничений только к положительным действительным числам, поэтому некоторые действия, производимые над более общими классами чисел, часто кажутся загадочными, например .
Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 1674 | |
2 | 1370 | |
3 | 1303 | |
4 | 602 | |
5 | 599 | |
6 | 513 | |
7 | 480 | |
8 | 468 | |
9 | 432 | |
10 | 430 | |
11 | 430 | |
12 | 416 | |
13 | 415 | |
14 | 409 | |
15 | 409 | |
16 | 401 | |
17 | 391 | |
18 | 391 | |
19 | 390 | |
20 | 383 |