Поиск в словарях
Искать во всех

Энциклопедия Кольера - электрохимия

Электрохимия

электрохимия раздел физической химии, изучающий химические процессы, которые сопровождаются появлением электрического тока или, наоборот, возникают под действием электрического тока. Предметом электрохимических исследований также являются электролиты и устанавливающиеся в них равновесия. Многие химические реакции протекают лишь при подводе энергии извне. Часто их проводят в электролитических ячейках (электролизерах) на электродах, соединенных с внешним источником тока. Изучение этих реакций дает информацию о природе и свойствах различных веществ, а также позволяет получать с помощью электросинтеза новые химические соединения. Электрохимические процессы широко применяются в промышленности. В качестве примера можно привести производство хлора и алюминия, гальваностегию и электрическую экстракцию. Гальванические элементы, преобразующие химическую энергию в электрическую, составляют основу источников тока батарей и аккумуляторов, а также топливных элементов. Электрохимия изучает и другие электрические явления: поведение ионов в растворах электролитов и прохождение тока через такие растворы; разделение ионов в электрическом поле (электрофорез); коррозию и пассивацию металлов; электрические эффекты в биологических системах (биоэлектрохимия); фотоэлектрохимические процессы (влияние света на электрохимические реакции в ячейках).

Историческая справка. Систематические электрохимические исследования стало возможным проводить лишь после создания постоянного достаточно мощного источника электрического тока. Такой источник появился на рубеже 18-19 вв. в результате работ Л.Гальвани и А.Вольты. Занимаясь исследованием физиологических функций лягушки, Гальвани случайно создал электрохимическую цепь, состоящую из двух разных металлов и мышцы препарированной лапки лягушки. Когда к лапке, закрепленной с помощью медного держателя, прикасались железной проволочкой, также соединенной с держателем, мышца сокращалась. Аналогичные сокращения происходили и под действием электрического разряда. Гальвани объяснил данный феномен существованием "животного электричества". Иное толкование этим опытам дал Вольта, посчитавший, что электричество возникает в месте соприкосновения двух металлов, а сокращение мышцы лягушки это результат прохождения через нее электрического тока. Ток возникал и в том случае, когда между двумя металлическими дисками, например цинковым и медным, помещали пропитанный соленой водой губчатый материал (сукно или бумагу) и замыкали цепь. Последовательно соединив 15-20 таких "элементов", Вольта в 1800 создал первый химический источник тока "вольтов столб". Влияние электричества на химические системы сразу заинтересовало многих ученых. Уже в 1800 У.Николсон и А.Карлейль сообщили, что вода разлагается на водород и кислород, когда через нее пропускают электрический ток с помощью платиновой и золотой проволочек, соединенных с "вольтовым столбом". Наиболее важными из ранних электрохимических исследований были работы английского химика Х.Дэви. В 1807 он выделил элемент калий, пропуская ток через слегка увлажненный твердый гидроксид калия. Источником напряжения служила батарея из 100 гальванических элементов. Аналогичным образом был получен металлический натрий. Позже Дэви, используя ртутный электрод, выделил с помощью электролиза магний, кальций, стронций и барий. Ассистент Дэви М. Фарадей исследовал связь между количеством электричества (произведением силы тока на время), протекающего через границу раздела электрод/раствор, и вызванными им химическими изменениями. Был создан прибор (известный теперь как газовый кулонометр) для измерения количества электричества по объему водорода и кислорода, выделившихся в электролитической ячейке, и было показано (1833), что количество электричества, необходимое для получения данного количества вещества, не зависит от размера электродов, расстояния между ними и числа пластин в питающей ячейку батарее. Кроме того, Фарадей обнаружил, что количество вещества, выделяющееся при электролизе, прямо пропорционально его химическому эквиваленту и количеству электричества, прошедшему через электролит. (Химический эквивалент это число граммов элемента или соединения, которое взаимодействует с одним молем атомов (1,0078 г) водорода или заменяет его в соединениях;

см. Эквивалентная Масса).

Эти два фундаментальных положения получили название законов Фарадея. Вместе со своим другом У.Уэвеллом, специалистом по классической филологии, Фарадей также разработал новую терминологию в электрохимии. Он назвал проводники, погруженные в раствор, электродами (ранее их называли полюсами); ввел понятия "электролиз" (химические изменения, связанные с прохождением тока), "электролит" (проводящая жидкость в электрохимических ячейках), "анод" (электрод, на котором происходит реакция окисления) и "катод" (электрод, на котором происходит реакция восстановления). Носители заряда в жидкостях он назвал ионами (от греч. "странник", "скиталец"), причем ионы, движущиеся к аноду (положительному электроду), получили название "анионов", а к катоду "катионов". Исследования Фарадея по электромагнитной индукции привели к созданию электрических генераторов, что позволило осуществлять электрохимические процессы в промышленных масштабах.

Способность растворов пропускать электрический ток Фарадей объяснял присутствием в них ионов, однако и он сам, и другие ученые, такие, как И.Гитторф и Ф.Кольрауш, считали, что ионы появляются под действием тока. В 1884 С.Аррениус высказал предположение, что на самом деле ионы образуются просто при растворении соли в воде. Работы С.Аррениуса, Я.Вант-Гоффа и В.Оствальда явились важной вехой в развитии теории электролитов и представлений о физико-химических свойствах растворов и их термодинамике. Соответствие теории и экспериментальных данных по ионной проводимости и равновесиям в растворе стало более полным после того, как в 1923 П.Дебай и Э.Хюккель учли дальние электростатические взаимодействия между ионами. Серьезный вклад в электрохимическую термодинамику и конкретно в выяснение природы электрического потенциала (напряжения) в электрохимической ячейке и баланса между электрической, химической и тепловой энергией внесли Дж.Гиббс и В.Нернст. Электрохимический потенциал определяется химической энергией процессов, протекающих в ячейке, но зависит также от их скорости (кинетики). Моделированием кинетических процессов на электродах занимались Ю.Тафель (1905), Дж. Батлер (1924), М. Фольмер (1930), А. Н. Фрумкин (1930-1933).

Электрохимические ячейки. Электрохимическая ячейка обычно состоит из двух полуэлементов, каждый из которых представляет собой электрод, погруженный в свой электролит. Электроды изготавливают из электропроводящего материала (металла или углерода), реже из полупроводника. Носителями заряда в электродах являются электроны, а в электролите ионы. Являющийся электролитом водный раствор поваренной соли (хлорида натрия NaCl) содержит заряженные частицы: катионы натрия Na+ и анионы хлора Cl-. Если поместить такой раствор в электрическое поле, то ионы Na+ будут двигаться к отрицательному полюсу, ионы Clк положительному. Расплавы солей, например NaCl, тоже электролиты. Электролитами могут быть и твердые вещества, например b-глинозем (полиалюминат натрия), содержащий подвижные ионы натрия, или ионообменные полимеры. Полуэлементы разделяются перегородкой, которая не мешает движению ионов, но предотвращает перемешивание электролитов. Роль такой перегородки может выполнять солевой мостик, трубка с водным раствором, закрытая с обоих концов стекловатой, ионообменная мембрана, пластина из пористого стекла. Оба электрода электролитической ячейки могут быть погружены в один электролит. Электрохимические ячейки бывают двух типов: гальванические элементы и электролитические ячейки (электролизеры). В гальваническом элементе химические реакции протекают самопроизвольно на границе раздела электрод/электролит, а электроды соединены друг с другом проводником. Несколько гальванических элементов, соединенных последовательно, образуют батарею химический источник тока. В электролитической ячейке реакции на границе раздела электрод/электролит протекают за счет внешнего источника электрической энергии; последняя превращается в химическую энергию продуктов реакций, протекающих на электродах. Устройство гальванического элемента представлено на рис. 1, а электролизера на рис. 2. Отметим, что одна и та же ячейка в зависимости от режима работы может вести себя то как гальванический элемент, то как электролизер. Так, автомобильный свинцовый аккумулятор действует как гальванический элемент, когда используется для запуска двигателя (при этом он разряжается), и как электролизер, когда заряжается от автомобильного генератора или от зарядного устройства.

Рис. 1. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ. В простом гальваническом элементе Даниеля перемещение каждых двух электронов по внешней цепи приводит к окислению одного атома цинка и осаждению одного атома меди. Электронейтральность растворов обеспечивается с помощью солевого мостика.Простой гальванический элемент, созданный в 1836 Дж. Даниелем (рис. 1), состоит из двух электродов: цинкового, погруженного в водный раствор сульфата цинка, и медного, погруженного в водный раствор сульфата меди (II). Такой элемент аналогичен медно-цинковым прам в вольтовом столбе. При замкнутой внешней цепи атомы цинка на поверхности цинкового электрода окисляются до ионов с высвобождением электронов: Zn -> Zn2+ + 2e-. Эти электроны перемещаются по внешней цепи на медный электрод и восстанавливают ионы меди до атомов: Cu2+ + 2e-> Cu. Поток электронов во внешней цепи это и есть ток, вырабатываемый элементом. Суммарная реакция, приводящая к химическому превращению и к генерации электрической энергии, имеет вид

Cr2+ / -0,424 2H+ + 2e-> H2 / 0,000 Cu2+ + 2e-> Cu / 0,340 Fe3+ + e-> Fe2+ / 0,771 O2 + 4H+ + 4e-> 2H2O / 1,229 Cl2 + 2e-> 2Cl/ 1,3583 F2 + 2e-> 2F/ 2,87 Отметим, что вещество некоторых электродов не входит в уравнение соответствующей реакции. Так, реакция

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины