Энциклопедия Кольера - геометрия
Геометрия
ИСТОРИЯ
Египет. Если не учитывать весьма скромный вклад древних обитателей долины между Тигром и Евфратом и Малой Азии, то геометрия зародилась в Древнем Египте до 1700 до н.э. Во время сезона тропических дождей Нил пополнял свои запасы воды и разливался. Вода покрывала участки обработанной земли, и в целях налогообложения нужно было установить, сколько земли потеряно. Землемеры использовали в качестве измерительного инструмента туго натянутую веревку. Еще одним стимулом накопления геометрических знаний египтянами стали такие виды их деятельности, как возведение пирамид и изобразительное искусство. Основным источником наших знаний о древнеегипетской геометрии является относящийся примерно к 1700 до н.э. папирус Ринда, названный по имени владельца, египтолога Ринда (этот папирус также называется папирусом Ахмеса) и хранящийся ныне в Лондоне в Британском музее. Папирус Ринда свидетельствует о том, что древних египтян интересовали главным образом практические аспекты геометрии и что при накоплении геометрических фактов египтяне почти всецело руководствовались интуицией, экспериментом и приближенными представлениями.
Греция. Около 600 до н.э. ионийские греки, совершившие путешествие в Египет, привезли на родину первые сведения о геометрии. Самым известным путешественником в Египет был Фалес (ок. 640 ок. 546 до н.э.). Он был преуспевающим купцом, посвятившим последние годы жизни науке и политике. Фалес первым начал доказывать истинность геометрических соотношений, последовательно выводя их логически из некоторого набора общепринятых утверждений, называемых аксиомами или постулатами. Этот метод дедуктивного рассуждения, которому предстояло стать доминирующим в геометрии и фактически во всей математике, сохраняет свое фундаментальное значение и в наши дни. Одним из наиболее знаменитых учеников Фалеса был Пифагор (ок. 570 ок. 500 до н.э.). Он много путешествовал, а потом поселился в Кротоне, в Италии, где основал общество, занимавшееся изучением арифметики, музыки, геометрии и астрономии. Пифагор и его последователи доказали много новых теорем о треугольниках, окружностях, пропорциях и некоторых трехмерных телах. Пифагор доказал также знаменитую теорему, носящую ныне его имя, согласно которой площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах. Пифагор умер в изгнании, но его влияние на греческих математиков ощущалось на протяжении многих веков. После его кончины в Элее (город в Италии) новыми центрами развивающейся геометрии становились по очереди Афины и Александрия. Архит Тарентский (ок. 428 ок. 365 до н.э.) и Гиппий Элидский (р. ок. 425 до н.э.) затратили много усилий на решение трех задач, игравших важную роль в древнегреческой математике: это задачи о трисекции угла, о построении квадрата, площадь которого равна площади данного круга (задача о квадратуре круга), и о построении куба, имеющего вдвое больший объем, чем данный куб (задача об удвоении куба). Хотя ныне известно, что с помощью циркуля и линейки (единственных орудий геометрических построений, известных древнегреческим математикам) эти задачи решить нельзя, тем не менее попытки это сделать не были напрасны. Они стимулировали изучение конических сечений и способствовали совершенствованию математических методов.
Александрия. Афинская школа числила в своих рядах таких великих людей, как Платон и Аристотель. После смерти Аристотеля центр научной мысли переместился в Александрию (Египет), где в начале 3 в. до н.э. был основан знаменитый Александрийский Мусейон один из главных научных центров античного мира. Живший в Александрии математик Евклид (3 в. до н.э.), биографические сведения о котором крайне скудны, собрал в 13 книгах своего сочинения значительную часть математических знаний того времени. Семь книг из 13 были посвящены геометрии, предмет которой был им тщательно и систематически изложен, различные утверждения и теоремы расположены в определенном порядке и перенумерованы. Была включена также теория пространственных тел, ограниченных плоскими поверхностями. Называлось это великое сочинение Начала, и последующие издания, точно придерживающиеся оригинала, стали основой обучения геометрии вплоть до нашего времени. Величайшим математиком античности был грек Архимед (ок. 287-212 до н.э.). Кроме множества других полученных им научных результатов и открытий, Архимед расширил ту часть Начал Евклида, в которой рассматривались пространственные тела, включив в их число сферу, цилиндр и конус. Другими великими александрийскими геометрами были Аполлоний Пергский (3 в. до н.э.; конические сечения), Птолемей (2 в. н.э.; астрономия) и Папп (3 в. н.э.; плоские кривые высших порядков). В 641 н.э. арабы разграбили Александрию и разрушили Мусейон и его библиотеку. Впрочем, греческая математика вступила в период застоя еще в начале 4 в. н.э, после кончины Паппа.
Средневековье. После падения Александрии большинство работ древнегреческих математиков были рассеяны или утрачены. Некоторые из них, в том числе Начала Евклида, были переведены и изучались арабами и индийцами. И хотя эти народы породили нескольких великих математиков, среди которых наиболее известны индийские математики Ариабхата (ок. 476 ок. 550) и Бхаскара II (ок. 1114-1185), все же их самой большой заслугой следует считать сохранение геометрии в период Средневековья. После падения Римской империи в 5 в. наука в Европе долгое время находилась почти в полном забвении. В 12 и 13 вв. Начала были переведены с греческого и арабского на латынь и современные европейские языки, а геометрия вошла в программу монастырских школ. Первый из этих переводов был выполнен Аделардом Батским в 1120.
Новое время. За последние 300 лет доказательная геометрия была существенно расширена, а по своим методам и степени общности результатов она стала заметно отличаться от элементарной геометрии (т.е. геометрии, изложенной в Началах). Французский математик Ж.Дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств геометрических фигур в зависимости от их проекций. Тем самым он заложил основу проективной геометрии, которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. В 19 в. это направление получило существенное развитие. Проективная геометрия, конические сечения и новая геометрия треугольников и окружностей составили содержание современной т.н. чистой геометрии. Тесно связанная с проективной, начертательная геометрия была введена французским математиком Г. Монжем (1746-1818). Эта новая область геометрии была связана с представлением изображений геометрических фигур на плоскости и определением геометрическими средствами расстояний, углов и линий пересечения. Начертательная геометрия представляет собой основу технического черчения. В 1637 Р. Декарт (1596-1650), французский философ и математик, опубликовал свою Геометрию первый труд по аналитической геометрии, позволивший применить в геометрии мощные алгебраические методы. Геометрические задачи всех видов теперь могли решаться в рамках единого подхода; кроме того, благодаря новым методам стала возможной постановка и решение новых задач, о которых древние не могли даже помыслить, но которые ныне находятся в самом центре математики и математической физики. Со времен первого появления Начал математики тщетно пытались доказать пятый постулат Евклида: через точку, не лежащую на прямой, можно провести только одну прямую, ей параллельную. В 19 в. было доказано, что можно построить непротиворечивую геометрию, используя все аксиомы и постулаты Евклида и отрицание постулата о параллельных, а это означало, что искомого доказательства пятого постулата не существует. Любая такая непротиворечивая геометрия получила название неевклидовой геометрии. Около 1830 Я.Бойяи (1802-1860) и Н.И.Лобачевский (1792-1856) независимо друг от друга построили геометрию, использовавшую постулат, согласно которому через точку, лежащую вне прямой, можно провести много прямых, ей параллельных. В 1854 Б.Риман (1826-1866) сформулировал постулат, согласно которому через точку вне прямой невозможно провести ни одной параллельной, что дало начало т.н. римановой геометрии. Неевклидова математика расширилась и стала включать в себя тригонометрию, аналитическую и дифференциальную геометрии, охватив не только планиметрию, но и стереометрию, а также геометрию пространств размерности больше трех (геометрию гиперпространств). Евклидова и обе неевклидовы геометрии одинаково хорошо служат для описания той ограниченной области пространства, в которой мы живем, хотя геометрия Евклида проще по форме. В то же время при переходе к римановой геометрии некоторые современные физические теории существенно упрощаются.
ЭЛЕМЕНТАРНАЯ ПЛАНИМЕТРИЯ
Аксиомы и постулаты. Существует набор исходных посылок, называемых аксиомами и постулатами, на которых базируется вся структура геометрии.
Аксиомы. Аксиомы это утверждения, принимаемые за истинные без доказательств. Аксиомы обычно подразделяются на две группы: общие, относящиеся ко всей математике, и геометрические. К числу общих аксиом относятся следующие.
1. Равные одному и тому же равны между собой. 2. Если к равным прибавляются равные, то суммы будут равны. 3. Если от равных отнимаются равные, то остатки будут равны. 4. Если равные умножить на равные, то произведения будут равны. 5. Если равные разделить на равные, то частные будут равны. Деление на нуль запрещается. 6. Одинаковые степени равных, а также корни одинаковой степени из равных равны. 7. Целое больше любой своей части. 8. Целое равно сумме своих частей.К числу геометрических аксиом относятся следующие.
1. Через любые две данные точки можно провести только одну прямую. 2. Геометрическую фигуру можно перемещать в пространстве, не изменяя ни ее размеров, ни ее формы. 3. Геометрические фигуры, которые совпадают после наложения, конгруэнтны (т.е. равны). 4. Прямая есть кратчайшее расстояние между двумя точками.Постулаты. Следующие постулаты касаются построений и принимаются за истинные без доказательств.
1. Через любые две данные точки можно провести прямую. 2. Прямая может быть продолжена бесконечно или же ограничена в любой своей точке. 3. Окружность может быть описана вокруг любой данной точки как центра и с любым радиусом. 4. Все прямые углы равны. 5. Через точку, не лежащую на прямой, можно провести одну и только одну прямую, ей параллельную.Некоторые геометрические фигуры, построения и заключения. Многие термины, используемые для описания фигур в геометрии, настолько фундаментальны, что определить их не представляется возможным. Все попытки сделать это приводили лишь к замене одних терминов другими, столь же неопределимыми, или к простому описанию некоторых свойств фигур. Например, термин "точка" не поддается определению.
Линии. Термин "линия" (или "кривая" в широком смысле слова) не имеет определения, хотя мысленно линию можно представить как след движущейся точки. Бесчисленные попытки определить прямую линию (рис. 1,а) не имели успеха. Многие из этих попыток апеллировали к физическому эксперименту, например, "прямая это туго натянутая линия". Чаще других приводится описание прямой, предложенное Архимедом: "Прямая это кратчайшее расстояние между двумя точками". Это "определение", однако, лишь заменяет неопределяемое понятие прямизны столь же неопределяемым понятием расстояния. Предполагается, что прямая бесконечна, т.е. ее можно неограниченно продолжить в обе стороны. Часть прямой называется отрезком. Ломаная (рис. 1,б) состоит из прямолинейных отрезков. Кривой (рис. 1,в) называется линия, никакая часть которой не является прямой.
Рис. 1. ЛИНИИ. а прямая; б ломаная; в гладкая кривая; г параллельные прямые; д перпендикулярные прямые; е наклонные прямые.Как показано на рис. 1,г, 1,д и 1,е, прямые могут быть параллельными, перпендикулярными и наклонными. Параллельные прямые это прямые, расстояние между которыми всюду одинаково. На рис. 1,г показано, как построить прямую, параллельную данной прямой L и отстоящую от нее на заданное расстояние. Берется окружность, радиус которой равен данному расстоянию. Проводятся две дуги с центрами в двух различных точках прямой L. Прямая, касательная к обеим дугам, и есть та прямая, которую требовалось построить. На рис. 1,д показано, как построить прямую, проходящую через точку Р и перпендикулярную прямой L. Порядок, в котором делаются засечки дугами, указаны номерами [[первыми следует провести (в любой последовательности) либо дугу 1, либо дугу 1']]. Для проведения дуг 2 и 2' циркуль устанавливается в точки пересечения прямой L дугами 1 и 1' соответственно, радиусы остаются те же самые. Прямая, проходящая через точку Р и точку пересечения дуг 2 и 2', есть искомый перпендикуляр. Перпендикуляр это кратчайшая линия, которую можно провести от точки до прямой, на которую он опущен, и расстояние от точки до прямой по определению равно длине перпендикуляра, опущенного из нее на прямую.
Углы. Углом называется фигура, образованная двумя полупрямыми, исходящими из одной точки. Эта точка называется вершиной угла, а полупрямые сторонами угла. Если стороны угла перпендикулярны друг другу, то образуемый ими угол называется прямым (рис. 2,а). Углы меньше прямого называются острыми (рис. 2,б), а углы больше прямого тупыми (рис. 2,в). Развернутым называется угол, обе стороны которого лежат на одной прямой (рис. 2,г); такой угол равен двум прямым углам. Биссектрисой угла называется прямая, проходящая через его вершину и делящая угол пополам. Углы можно измерять количественно, если определить единицу измерения угла (угол в один градус) как 1/180 развернутого угла. Таким образом, прямой угол содержит 90В°, а угол на рис. 2,д содержит больше 180В°, но меньше 360В°.
Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 1674 | |
2 | 1370 | |
3 | 1303 | |
4 | 602 | |
5 | 599 | |
6 | 513 | |
7 | 480 | |
8 | 468 | |
9 | 432 | |
10 | 430 | |
11 | 430 | |
12 | 416 | |
13 | 415 | |
14 | 409 | |
15 | 409 | |
16 | 401 | |
17 | 391 | |
18 | 391 | |
19 | 390 | |
20 | 383 |