Поиск в словарях
Искать во всех

Энциклопедия Кольера - химия поверхностных явлений

Химия поверхностных явлений

химия поверхностных явлений изучает химические силы, действующие на поверхности. В общем случае химия поверхности рассматривает свойства трех состояний вещества твердого (Т), жидкого (Ж) и газообразного (Г) и дает описание вещества как фазовой системы. Однако если два различных состояния (две фазы) мгновенно смешать, получается система, для описания которой требуется знание не только характеристик массы или объема составляющих фаз, но и свойств пограничной области между ними, т.е. границы раздела фаз, а этот вопрос является предметом изучения науки о поверхностных явлениях, которая включает в себя физику и химию поверхности. Так как граница раздела играет определяющую роль в коллоидных системах, химия поверхностных явлений для этих систем имеет важнейшее значение, но особенно она важна и более широко распространена в биологии, ведь живая клетка, например, содержит не только внешнюю мембранную систему, но и много других границ раздела между ее компонентами.

См. также Химия Коллоидная. Обычно существует несколько типов границ раздела: Т/Т, Т/Ж, Ж/Ж, Т/Г, Ж/Г. Не реализуется только граница раздела Г/Г, так как газы полностью смешиваются друг с другом. Твердые тела или жидкости могут образовывать стабильные границы раздела. Граница раздела Т/Т хорошо известна в геологических образованиях типа гранита, а также в металлургии. Граница раздела Ж/Ж существует в эмульсиях, которые приобретают все возрастающее значение в приготовлении пищевых продуктов и медицинских препаратов. Граница раздела Т/Ж имеет фундаментальное значение для стабильности многих коллоидных дисперсных систем, универсальный характер которых делает ее важной в более широком смысле. Так, знание свойств границы раздела Т/Ж, а также Т/Г имеет решающее значение для развития представлений о гетерогенном катализе (см. ниже). Примером практического использования химии поверхностных явлений на границе раздела Т/Г является каталитический нейтрализатор выхлопных газов автомобильного двигателя. Граница раздела Ж/Г имеет важное практическое значение вследствие ее широкого распространения, а также теоретическое значение, поскольку ее рассмотрение на молекулярном уровне служит моделью развития представлений и о других границах раздела. Силы, действующие на поверхности, т.е. на границе раздела (поверхностные силы), по своей природе не отличаются от сил, действующих в объеме фаз. Они могут меняться в широком диапазоне от очень слабых, вандерваальсовых (сил межмолекулярного взаимодействия) до очень сильных ковалентных связей, характерных для стабильных химических соединений. Слабые силы, по-видимому, обусловлены электростатическими эффектами, которые возникают под влиянием электронных оболочек, окружающих атомы. Слабые силы, часто называемые дисперсионными, характерны для углеводородов и многих легкокипящих веществ, но, вероятно, в той или иной степени дают вклад во все типы связей. Слабые связи проявляются в полярных веществах типа постоянных электрических диполей, между которыми возникают взаимодействия, приводящие к упорядочению диполей и увеличению прочности связей между ними. Водородные связи в воде, имеющие именно такую природу, ответственны за ее аномальные свойства (если сравнить с другими аналогичными молекулами, например H2S). Подобные связи водород образует с другими (электроотрицательными) элементами азотом, фтором и т.д.; особенно важные примеры дают гелеподобные структуры белков и нуклеиновых кислот. В некоторых веществах происходит настолько значительное разделение электрических зарядов, что образуются ионы (а не нейтральные атомы), и электростатические силы (электростатические связи) обеспечивают образование структуры высокой стабильности. Так, в молекуле обычной соли (хлорид натрия, NaCl) ионы натрия и хлора структурно эквивалентны один ион натрия (Na+) окружен хлорид-ионами (Cl-), находящимися на одинаковом расстоянии, и, наоборот, один хлорид-ион окружен ионами натрия, находящимися на одинаковом расстоянии. Это вещество состоит не из отдельных молекул NaCl; скорее, кристалл соли является одной гигантской полимерной молекулой. Многие неорганические материалы имеют структуру подобного типа. Другой тип очень стабильной структуры содержит ковалентные связи. (В ковалентной связи два атома передают электроны в общее пользование, при этом не происходит разделения электрических зарядов или оно крайне мало.) Такая структура типична для алмаза. Алмаз это чистый углерод, в котором каждый нейтральный атом углерода ковалентно связан с четырьмя другими, находящимися в вершинах тетраэдра, расстояния между которыми одинаковы. Каждый из этих атомов таким же образом связан с четырьмя другими атомами углерода, и в целом подобная структура существует на протяжении всего кристалла алмаза. Как и в случае электростатически связанных кристаллов, таких, как NaCl, нельзя говорить о молекулах, включенных в структуру алмаза, скорее, алмаз это одна огромная молекула Cn, содержащая только один тип атомов. Рассмотренные выше силы это силы притяжения, которые приводят к образованию молекул или молекулярных агрегатов. Однако существуют также силы отталкивания, возникающие вследствие взаимного отталкивания электронных оболочек, окружающих атомы. Так как силы отталкивания действуют на малых расстояниях, их эффекты становятся заметными всякий раз тогда, когда молекулы сближаются друг с другом, например при высоком давлении. Этот эффект наиболее очевиден для жидких систем, которые почти несжимаемы, однако подобные силы проявляются также в твердых системах и даже в газах при экстремальных условиях. Для разрыва различных связей требуется затратить энергию от менее 10 кДж/моль в случае слабых дисперсионных сил до 1000 кДж/моль для прочных электровалентных (ионных) структур. Так как все эти силы играют ту или иную роль в поверхностных явлениях, последние очень различаются. Один фактор, однако, является общим для всех структур: внутри объема фазы любая единица структуры подобна другой, но на поверхности это условие не выполняется. В наиболее экстремальном случае границы раздела Т/Г атом на поверхности твердого тела подвержен сильному взаимодействию с атомами собственного слоя и внутренних слоев твердого тела. Однако выше поверхности существуют только атомы газа, которые могут в результате случайных столкновений оказаться на поверхности. Такая же асимметрия существует на границе раздела Ж/Г (рис. 1). На границах раздела Ж/Ж, Т/Т и Т/Ж эта асимметрия выражена не так резко, однако переход между двумя различными фазами тем не менее всегда скачкообразен, что может влиять на заполнение поверхностных слоев в соседних фазах. Это вполне понятно в случае жидкостей, однако такой эффект нередко встречается и в твердых фазовых системах.

Рис. 1. АСИММЕТРИЯ ПОВЕРХНОСТНЫХ СИЛ. Атомы в жидкости одинаково взаимодействуют с другими атомами жидкости. Взаимодействия поверхностных атомов с относительно малым количеством атомов газа, которые находятся над поверхностью, относительно малы и менее часты.Граница раздела жидкость/газ. Жидкое состояние возникает вследствие существования короткодействующих сил притяжения, которые, в большинстве случаев, препятствуют выходу молекул жидкости в газовую фазу, но не мешают их движению за счет соударения друг с другом. Такое соударение является причиной хорошо известного броуновского движения

(см. также Броуновское Движение).

Почти полное отсутствие молекул жидкости над жидкой поверхностью является результатом действия сил притяжения соседними молекулами, вследствие чего молекулы с поверхности втягиваются вглубь объема. Поэтому капля жидкости испытывает поверхностное сжатие, как будто она покрыта эластичной оболочкой, как у воздушного шара, хотя на самом деле такой оболочки у нее нет. В терминах энергетических представлений можно сказать, что молекулы на поверхности, обладая большей энергией, чем молекулы в объеме, стремятся уменьшить свою энергию, чтобы сохранить устойчивость системы. Оба объяснения согласуются со сферической формой падающих жидких капель малого размера (сфера имеет наименьшую поверхность для данного объема) и другими следствиями существования поверхностного натяжения. Поверхностное натяжение (g) определяется как сила, отнесенная к единице длины, или как работа, затрачиваемая на создание единицы площади поверхности раздела фаз при постоянной температуре, и выражает тенденцию поверхностей к стягиванию. Исходя из стремления жидкой сферической капли к сжатию (уменьшению объема), равновесное состояние может быть достигнуто только при наличии избыточного давления DP внутри капли:

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины