Энциклопедия Кольера - нуклеосинтез
Нуклеосинтез
Космологический нуклеосинтез. А. Пензиас и Р. Уилсон, обнаружив в 1965, что космическое пространство заполнено микроволновым излучением, подтвердили предсказание, сделанное почти за 20 лет до этого Р. Альфером, Р. Херманом и Г. Гамовым, которые теоретически изучали ядерные реакции в очень молодой Вселенной. Открытие реликтового микроволнового излучения доказало, что 10-20 млрд. лет назад Вселенная была очень плотной и горячей. Ее температура превышала 1 000 000 000 К, а плотность была как в недрах Солнца именно такие условия требуются для ядерных реакций. Выяснив, что температура реликтового излучения составляет 2,75 К, астрономы определили типы и интенсивность ядерных реакций в те далекие времена. Почти все эти реакции удалось осуществить в лаборатории и определить, с какой интенсивностью происходят реакции при разных температурах, сколько при этом выделяется энергии и какие получаются продукты. Эти данные позволили разобраться в звездном нуклеогенезе, о котором пойдет речь в следующем разделе. Основными продуктами ядерных реакций в молодой Вселенной были водород и гелий в пропорции по массе примерно 3:1. Сформировалось также мизерное количество тяжелого водорода (дейтерия, D или 2H), легкого гелия (3He) и лития (Li): всего несколько миллионных долей от общей массы. Поэтому самые первые звезды должны были состоять практически только из водорода и гелия. Тех первых звезд уже нет, но самые старые из сохранившихся звезд содержат менее 0,001% всех прочих элементов. А вот у Солнца и более молодых звезд эти элементы составляют по массе уже около 2%. Реакции в ранней Вселенной остановились на водороде и гелии с небольшим количеством примесей, потому что не существует устойчивых атомных ядер, содержащих 5 или 8 протонов и нейтронов. Именно поэтому из водорода (с одним протоном) и гелия (с двумя протонами и двумя нейтронами) нельзя составить более сложные ядра. К тому времени, когда Вселенная охладилась настолько, что стали возможны и другие реакции, она так расширилась, что низкая плотность вещества сделала крайне маловероятным одновременное столкновение трех и более ядер для рождения более сложных элементов. Важная особенность космологического нуклеосинтеза состоит в том, что количество образовавшегося гелия, дейтерия и лития зависит от средней плотности Вселенной (рис. 1). При высокой плотности частицы чаще сталкиваются, поэтому многие протоны и нейтроны объединяются в ядра гелия и остается очень мало дейтерия; при низкой плотности образуется больше дейтерия, но меньше гелия и лития.
Рис. 1. КОСМОЛОГИЧЕСКИЙ НУКЛЕОСИНТЕЗ образование химических элементов в ранней Вселенной. На вертикальной оси указана доля вещества, заключенная в изотопах гелий-4, гелий-3, дейтерий (2H) и литий-7, как функция современной плотности обычного вещества (горизонтальная ось). Четыре заштрихованных прямоугольника показывают наблюдаемую долю этих изотопов в веществе, которое не испытало переработку в звездах. Пунктирная вертикальная линия указывает верхний предел плотности обычного вещества, согласующийся с распространенностью этих элементов, а сплошная вертикальная линия наиболее вероятная плотность обычного вещества. Этот верхний предел составляет около 15%, а вероятная величина менее 10% от того критического значения плотности, при котором расширение Вселенной остановится и сменится сжатием. Принято, что постоянная Хаббла равна 50 км/(с Мпк) и что существуют три типа нейтрино.С другой стороны, плотность Вселенной определяет ее судьбу: будет ли расширение продолжаться вечно или остановится и сменится сжатием. Измеренное содержание гелия, дейтерия, 3He и лития показало, что плотности обычного вещества недостаточно, чтобы остановить расширение Вселенной. Если расширение Вселенной уравновешено гравитацией всего вещества, значит, основная его часть состоит из неизвестных частиц, отличных от обычных протонов, нейтронов и электронов. Предложено много кандидатов на роль этого неизвестного вещества, но ни один из них пока не наблюдался в лаборатории.
Звездный нуклеосинтез. Плотность и температуру в центре Солнца можно рассчитать, используя тот факт, что в каждой точке этой звезды давление газа должно уравновешивать тяжесть вышележащих слоев. Условия в Солнце оказываются подходящими для ядерных реакций. Звезды образуются, когда облака межзвездного газа сжимаются под действием гравитации. Облака с массой более 8% массы Солнца разогреваются от сжатия настолько, что в них начинают протекать ядерные реакции и они становятся звездами. Эти процессы иногда называют не ядерными реакциями, а "ядерным горением". Пока звезда формируется, газ в облаке движется турбулентно и хорошо перемешивается. Поэтому звезда начинает жизнь химически однородной. Затем она уже не перемешивается вплоть до поздних стадий эволюции; поэтому возникшие в ядерных реакциях элементы попадают из недр звезды на поверхность лишь в самом конце ее жизни. Солнце еще не достигло этой стадии. Первым сгорает водород. Поскольку его ядра состоят лишь из одного протона, они взаимодействуют при довольно низких температурах, около 107 К. Возможны две цепочки реакций. В одной, названной протон-протонным циклом, протоны взаимодействуют непосредственно. Четыре протона образуют одно ядро гелия. В более сложной цепочке реакций, названной CNO-циклом, также формируется ядро гелия из четырех протонов, но при этом углерод, азот и кислород служат катализаторами. В CNO-цикле, кроме гелия, образуется дополнительный азот важный элемент для формирования протеинов (т.е. белков). Эти две цепочки реакций записаны ниже; символы bи b+ означают электрон и позитрон, ne нейтрино, а g гамма-лучи:
Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 1674 | |
2 | 1370 | |
3 | 1303 | |
4 | 602 | |
5 | 599 | |
6 | 513 | |
7 | 480 | |
8 | 468 | |
9 | 433 | |
10 | 430 | |
11 | 430 | |
12 | 416 | |
13 | 415 | |
14 | 409 | |
15 | 409 | |
16 | 401 | |
17 | 391 | |
18 | 391 | |
19 | 390 | |
20 | 383 |