Энциклопедия Кольера - проективная геометрия
Проективная геометрия
См. также Конические Сечения.
История. Хотя конические сечения изучали еще Менехм, Евклид, Архимед и Аполлоний в 4 и 3 вв. до н.э., первые действительно проективные теоремы были открыты Паппом Александрийским в 3 в. н.э., а самое раннее доказательство проективной теоремы, исходящее из чисто проективных свойств фигур, было предложено Ж. Понселе (1788-1867), который, находясь в русском плену после бегства Наполеона из Москвы, написал Трактат о проективных свойствах фигур. Развивая идею, высказанную ранее И.Кеплером (1571-1630), Понселе получил проективное пространство из обычного, постулировав существование "бесконечно удаленной плоскости", содержащей "бесконечно удаленную прямую" для каждого пучка параллельных плоскостей, и "бесконечно удаленную точку" для каждого пучка параллельных прямых. Это позволило утверждать, что две параллельные прямые пересекаются в бесконечно удаленной точке. Но для того, чтобы действительно перейти к проективной геометрии, надо уравнять в правах эти дополнительно введенные бесконечно удаленные точки с обычными. Большую роль в этом сыграли работы К. фон Штаудта (1798-1867), а последние следы зависимости от измерений устранил в 1899 М. Пьери, построивший систему аксиом проективной геометрии. Впоследствии другими авторами предлагались системы аксиом, слегка отличные от системы Пьери. Используемая нами далее система аксиом была предложена в 1910 О. Вебленом и Дж. Юнгом.
Определения. Основными понятиями, не нуждающимися в определении, будем считать "точку", "прямую" и отношение "инцидентности". Если точка P и прямая l инцидентны, мы говорим, что точка P "лежит на" прямой l, или что прямая l "проходит через" точку P. Если прямая l проходит через две точки P и Q, то мы говорим, что l "соединяет" их, и записываем l = PQ. Если точка P лежит на прямых l и m, мы говорим, что эти прямые "пересекаются" в P, и записываем P = lЧm. Три и более точек на одной прямой называются "коллинеарными". Три и более прямых, проходящих через одну точку, называются "пересекающимися в одной точке". После введения понятия плоскости (см. ниже) мы можем использовать аналогичные термины для пространственных понятий: если плоскость a проходит через две прямые l и m, мы говорим, что она "соединяет" их, и записываем a = lm; если прямая l лежит в плоскостях a и b, мы говорим, что эти плоскости "пересекаются" по прямой l, и записываем l = a*b. "Треугольник" ABC состоит из трех неколлинеарных точек A, B, C, называемых его "вершинами", и трех соединяющих их прямых линий BC, CA, AB, называемых его "сторонами". "Плоскость" ABC состоит из всех точек, которые лежат на прямых, соединяющих C с точками на AB, и всех прямых, соединяющих пары построенных таким образом различных точек. Если четыре точки на плоскости соединены попарно шестью различными прямыми, то они называются вершинами "полного четырехвершинника" (рис. 1), а соответствующие прямые служат его шестью сторонами. Две стороны называются "противоположными", если они не имеют общей вершины. Точка, в которой пересекаются две противоположные стороны, называется "диагональной точкой".
Рис. 1. "ПОЛНЫЙ ЧЕТЫРЕХВЕРШИННИК" можно получить, соединив попарно четыре точки шестью прямыми. Точки пересечения противоположных сторон (диагональные точки) отмечены звездочками.Если подвижная точка X на одной фиксированной прямой и подвижная точка XСћ на другой соответствуют друг другу так, что прямая XXСћ всегда проходит через неподвижную точку O, мы будем писать
Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 1674 | |
2 | 1370 | |
3 | 1303 | |
4 | 602 | |
5 | 599 | |
6 | 513 | |
7 | 480 | |
8 | 468 | |
9 | 432 | |
10 | 430 | |
11 | 430 | |
12 | 416 | |
13 | 415 | |
14 | 409 | |
15 | 409 | |
16 | 401 | |
17 | 391 | |
18 | 391 | |
19 | 390 | |
20 | 383 |