Энциклопедия Кольера - урановая промышленность
Урановая промышленность
Ресурсы. Общемировые достаточно надежно разведанные ресурсы урана, который можно было бы выделить из руды по себестоимости не выше 100 долл. за килограмм, оцениваются приблизительно в 3,3 млрд. кг U3O8. Примерно 20% этого (ок. 0,7 млрд. кг U3O8, см. рисунок) приходится на Австралию, за которой следуют США (ок. 0,45 млрд. кг U3O8). Значительными ресурсами для производства урана располагают ЮАР и Канада.
См. также Минеральные Ресурсы.
МИРОВЫЕ ЗАПАСЫ УРАНА.Урановое производство. Основные этапы производства урана это добыча руды подземным или открытым способом, обогащение (сортировка) руды и извлечение урана из руды выщелачиванием. На руднике урановую руду извлекают из горного массива буро-взрывным способом, раздробленную руду сортируют и размельчают, а затем переводят в раствор сильной кислоты (серной) или в щелочной раствор (карбоната натрия, что наиболее предпочтительно в случае карбонатных руд). Раствор, содержащий уран, отделяют от нерастворенных частиц, концентрируют и очищают сорбцией на ионообменных смолах или экстракцией органическими растворителями. Затем концентрат, обычно в форме оксида U3O8, называемого желтым кеком, осаждают из раствора, сушат и укладывают в стальные емкости вместимостью ок. 1000 л. Для извлечения урана из пористых руд осадочного происхождения все чаще применяется метод выщелачивания на месте. По скважинам, пробуренным в рудном теле, непрерывно прогоняют щелочной или кислый раствор. Этот раствор с перешедшим в него ураном концентрируют и очищают, а затем из него осаждением получают желтый кек.
См. также Руды Обогащение.
Переработка урана в ядерное топливо. Концентрат природного урана желтый кек это исходный компонент ядерного топливного цикла. Для превращения природного урана в топливо, соответствующее требованиям ядерного реактора, нужны еще три этапа: преобразование в UF6, обогащение урана и изготовление тепловыделяющих элементов (твэлов).
ЦИКЛ ЯДЕРНОГО ТОПЛИВА.Преобразование в UF6. Для преобразования оксида урана U3O8 в гексафторид урана UF6 желтый кек обычно восстанавливают безводным аммиаком до UO2, из которого затем с помощью плавиковой кислоты получают UF4. На последнем этапе, действуя на UF4 чистым фтором, получают UF6 твердый продукт, возгоняющийся при комнатной температуре и нормальном давлении, а при повышенном давлении плавящийся. Пять крупнейших производителей урана (Канада, Россия, Нигер, Казахстан и Узбекистан) вместе могут давать 65 000 т UF6 в год.
Обогащение урана. На следующем этапе ядерного топливного цикла повышается содержание U-235 в UF6. Природный уран состоит из трех изотопов: U-238 (99,28%), U-235 (0,71%) и U-234 (0,01%). Для реакции деления в ядерном реакторе необходимо более высокое содержание изотопа U-235. Обогащение урана осуществляется двумя основными методами разделения изотопов: газодиффузионным методом и методом газового центрифугирования. (Энергия, затрачиваемая на обогащение урана, измеряется в единицах разделительной работы, ЕРР.) При газодиффузионном методе твердый гексафторид урана UF6 переводят понижением давления в газообразное состояние, а затем прокачивают по пористым трубкам из специального сплава, сквозь стенки которых газ может диффундировать. Поскольку масса атомов U-235 меньше, чем атомов U-238, они легче и быстрее диффундируют. В процессе диффузии газ обогащается изотопом U-235, а газ, прошедший по трубкам, обедняется. Обогащенный газ снова пропускают по трубкам, и процесс продолжается до тех пор, пока содержание изотопа U-235 в отборе не достигнет уровня (3-5%), необходимого для работы ядерного реактора. (Для оружейного урана требуется обогащение до уровня свыше 90% U-235.) В отходах обогащения остается лишь 0,2-0,3% изотопа U-235. Газодиффузионный метод характеризуется высокой энергоемкостью. Заводы, основанные на этом методе, имеются только в США, во Франции и в КНР. В России, Великобритании, Германии, Нидерландах и Японии применяется метод центрифугирования, при котором газ UF6 приводится в очень быстрое вращение. Благодаря различию в массе атомов, а следовательно, и в центробежных силах, действующих на атомы, газ вблизи оси вращения потока обогащается легким изотопом U-235. Обогащенный газ собирается и экстрагируется.
Изготовление твэлов. Обогащенный UF6 поступает на завод в 2,5-т стальных контейнерах. Из него гидролизом получают UO2F2, который затем обрабатывают гидроксидом аммония. Выпавший в осадок диуранат аммония отфильтровывают и обжигают, получая диоксид урана UO2, который прессуют и спекают в виде небольших керамических таблеток. Таблетки вкладывают в трубки из циркониевого сплава (циркалоя) и получают топливные стержни, т.н. тепловыделяющие элементы (твэлы), которые объединяют примерно по 200 штук в законченные топливные сборки, готовые для использования на АЭС. Отработанное ядерное топливо сильно радиоактивно и требует особых мер предосторожности при хранении и удалении в отходы. В принципе его можно переработать, отделив продукты деления от остатков урана и плутония, которые повторно могут служить ядерным топливом. Но такая переработка дорого стоит и соответствующие коммерческие предприятия имеются лишь в некоторых странах, например во Франции и Великобритании.
Объем производства. К середине 1980-х годов, когда надежды на быстрый рост ядерной энергетики не оправдались, объем производства урана резко упал. Строительство многих новых реакторов было приостановлено, а на действующих предприятиях стали накапливаться запасы уранового топлива. С распадом Советского Союза дополнительно увеличилось предложение урана на Западе. Мировая потребность в уране в середине 1990-х годов составляла УРАНОВАЯ ПРОМЫШЛЕННОСТЬ75 млн. кг. Примерно по 30% этого количества приходилось на США и Европейский союз, а около 15% на Восточную Азию.
См. также
Ядер Деление;
Атомная Энергетика. К концу 20 в. все большее влияние на урановую промышленность стали оказывать военные запасы урана. В конце 1992 Россия согласилась демонтировать почти половину своих запасов ядерного оружия и переработать высвободившийся оружейный уран в металл топливного сорта. США согласились приобрести этот материал по рыночным ценам. К 2000 ядерный материал конвертированного оружия составил не менее 20% предложения на мировом рынке урана.
См. также
Электрическая Энергия;
Энергетические Ресурсы;
Уран.
ЛИТЕРАТУРА
Чесноков Н.И., Петросов А.А. Системы разработки месторождений урановых руд. М., 1982 Смирнов Ю.В. и др. Аппараты и оборудование зарубежных гидрометаллургических заводов. М., 1984
Вопрос-ответ:
Самые популярные термины
1 | 1674 | |
2 | 1370 | |
3 | 1303 | |
4 | 602 | |
5 | 599 | |
6 | 513 | |
7 | 480 | |
8 | 468 | |
9 | 432 | |
10 | 430 | |
11 | 430 | |
12 | 416 | |
13 | 415 | |
14 | 409 | |
15 | 409 | |
16 | 401 | |
17 | 391 | |
18 | 391 | |
19 | 390 | |
20 | 383 |