Энциклопедия Кольера - вариационное исчисление
Вариационное исчисление
раздел математики, занимающийся решением задач, связанных с отысканием экстремальных значений; одной из таких задач является нахождение кривой, обращающей некоторую величину в минимум (или в максимум). И.Ньютон решил задачу такого типа, найдя форму поверхности вращения, при которой тело, двигаясь в сплошной среде, испытывает наименьшее сопротивление.
Свои результаты Ньютон изложил в Математических началах натуральной философии (1687). В 1696 И.Бернулли сформулировал задачу о брахистохроне, или кривой наискорейшего спуска: найти траекторию, соединяющую две точки в вертикальной плоскости, двигаясь по которой материальная частица под действием только силы тяжести переместится из одной точки в другую за кратчайшее время.Различными методами и независимо друг от друга И.Бернулли и его брат Якоб доказали, что такой кривой является циклоида. Общая задача вариационного исчисления состоит в том, чтобы среди всех непрерывных дуг y = y(x), соединяющих две точки P1(x1, y1) и P2(x2, y2) плоскости и имеющих непрерывно поворачивающиеся касательные, найти такую дугу, для которой не обращающийся в бесконечность интеграл .
Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 1674 | |
2 | 1370 | |
3 | 1303 | |
4 | 602 | |
5 | 599 | |
6 | 513 | |
7 | 480 | |
8 | 468 | |
9 | 432 | |
10 | 430 | |
11 | 430 | |
12 | 416 | |
13 | 415 | |
14 | 409 | |
15 | 409 | |
16 | 401 | |
17 | 391 | |
18 | 391 | |
19 | 390 | |
20 | 383 |