Энциклопедия Брокгауза и Ефрона - арифметически-геометрическая средняя
Арифметически-геометрическая средняя
А.-геометрическая средняя из двух чисел получается следующим образом. Пусть данные числа суть a и g < a. Составим их арифметическую среднюю a1 и геометрическую среднюю g1, т. е. найдем a1 = 1/2(a+g) и g1 = √(ag). Таким же образом составим a2 = 1/2(a1+g1) и g2 = √(a1g1) и т. д. Числа a, a1, a2… и g, g1, g2… будут представлять убывающий ряд, вторые возрастающий. Все числа первого ряда больше всех чисел второго, и оба ряда стремятся к одному и тому же пределу, который и есть А.-геометрическая средняя. Означим ее AG. Напр. а = 2 g = 1. Последовательно находим
a1 = 1.5000000 g1 = 1.4132136
а2 = 1.3737734 g2 = 1.3731462
а3 = 1.3734598 g3 = 1.3734596
а4 = 1.3734597 g4 = 1.3734597
Итак, AG(211) = 1.3734597
А.-геометрическая средняя играет роль в вычислении эллиптических интегралов. А именно, Гадес показал, что
2K/π = 1 : AG(1 + k, 1 — k).
Он же вычислил таблицу AG между единицей и синусами углов от 0 до 90° через полуградус (Гаусс, "Werke", Bd. III).
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон
1890—1907
Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 1293 | |
2 | 1193 | |
3 | 1139 | |
4 | 1124 | |
5 | 919 | |
6 | 712 | |
7 | 676 | |
8 | 659 | |
9 | 654 | |
10 | 650 | |
11 | 623 | |
12 | 622 | |
13 | 617 | |
14 | 609 | |
15 | 601 | |
16 | 597 | |
17 | 596 | |
18 | 574 | |
19 | 551 | |
20 | 544 |