Энциклопедия Брокгауза и Ефрона - ньютон исаак
Ньютон исаак
знаменитый английский математик и физик (1643—1727). Родился в деревне Вульсторп, близ г. Грантана в Линкольншире, через несколько месяцев после смерти своего отца. Появившись на свет раньше срока, он был очень слаб и в начале подавал мало надежд на продолжительность жизни. Учиться начал в деревенской школе и в возрасте 12 лет поступил в Грантанскую городскую школу. В первые годы ученья был ленив, однако, с раннего детства любил заниматься устройством игрушечных механизмов, вроде довольно искусно построенных им ветряной мельницы, управляемой мышью, самоката, водяных часов и проч. Позднее в нем развилась склонность к рисованию и писанию стихов. В возрасте 16 лет он должен был оставить школу по недостаточности средств и возвратиться в деревню к матери, которая тогда только что овдовела вторично и потому желала сделать из него помощника для себя — сельского хозяина. Но вполне определившиеся к этому времени научные стремления Н. влекли его к продолжению занятий науками. Матери пришлось, наконец, уступить настойчивому желанию сына и согласиться сперва на его возвращение в оставленную школу, а затем (через несколько месяцев) и на поступление в Университет, состоявшееся в 1660 г. Н. поступил в Trinity College Кембриджского унив., в разряд неимущих студентов. Здесь его занятия математикой, в которых он был предоставлен самому себе, начались с изучения "Геометрии" Декарта, "Arithmeticae unfinitorum" Валлиса и в меньшей степени "Элементов" Эвклида. В 1663 г. должность профессора математики в Кембриджском унив. занял Исаак Барроу, оказавший самое решительное влияние как на размеры и характер приобретенного Н. в Университете научного образования, так и даже, пожалуй, в большей степени на склад его политических и религиозных убеждений и взглядов. Как известно, Н. вышел из Университета и затем остался на всю жизнь преданным сыном церкви и строгим консерватором в деле политики. Влиянию Барроу он был обязан также и своими занятиями оптикой, приведшими его к таким блестящим открытиям. С 1665 и по 1668 г. включительно внешняя деятельность Н. была посвящена главным образом приобретению университетских ученых степеней. Первый его дебют на этом поприще был, однако же, неудачен. На состязании для получения степени общника (fellow) он был побежден неким Уведалем, только благодаря этому обстоятельству и сделавшимся известным. В 1668 г. Н. получил степень магистра, а в следующем году его учитель Барроу уступил ему свою кафедру в Кембриджском университете для того, чтобы этим путем обеспечить своего талантливого ученика в материальном отношении. С этого года Н. занимал профессорскую должность в Кембридже фактически до 1696 г. и номинально до 1701 г. Во все время отправления своих профессорских обязанностей Н. находился в очень стесненном положении в материальном отношении, что, может быть, и было причиной того, что он на всю жизнь остался холостяком. Отказавшись вступить в монашество, на что потребовалось даже особое разрешение короля Карла II (по крайней мере, для сохранении фелловства в Trinity College), он не мог иметь доли в доходах кембриджской профессорской корпорации, как монашеского учреждении, и должен был довольствоваться одним скудным вознаграждением из суммы, пожертвованной для обеспечения занимаемой им кафедры ее основателем Генри Лукасом. Все время своего пребывания в Кембридже он должен был, поэтому, жить в одной и той же тесной келье, могущей привлекать его разве только тем, что именно в ней зародились и вышли на свет его великие открытия. Убежденный монархист, но еще более ревностный приверженец церкви, он отступал от своих монархических принципов только в тех случаях, когда королевская власть посягала на права и привилегии церкви. Так, когда король Яков II потребовал от Кембриджского унив., вопреки его статутам, возведения в степень бакалавра одного бенедиктинца без принесения последним присяги, Н., по избранию Университета, явился горячим защитником его привилегий перед высшим судом, что заставило короля отказаться от своего требовании. В благодарность за такой успешный исход дела Университет избрал Н., в 1688 г., хотя и очень незначительным большинством голосов, своим представителем в парламент в ту его сессию, которая, продолжавшись до 1690 г., образовала из себя известную конвенцию, т. е. парламентское собрание, избравшее английским королем Вильгельма III. Н. в парламенте примкнул, согласно со своими убеждениям, к партии тори, которая, впрочем, едва ли нашла в нем особенно полезного члена, так как во все его пребывание в парламенте от него слышали только одно слово, состоявшее в приказе швейцару закрыть окно, из которого дул сквозной ветер на оратора. Боязнь публичного слова составляла, по-видимому, одну из основных черт характера Н. Даже в ученых собраниях он никогда не говорил перед публикой. Дело при этом доходило до того, что он упорно молчал даже тогда, когда обращались с возражениями лично к нему. Такое отношение к публичному слову происходило у Н., по мнению одних — от его природной застенчивости, по утверждению же других — от чрезмерного самомнении, не позволявшего ему выносить возражения и заставлявшего его смотреть на критику своих взглядов и трудов, как на личное для себя оскорбление. Этим вполне объясняется составляющее его характеристическую особенность нежелание издавать в свет свои ученые труды, которое привело, с одной стороны, к очень позднему появлению большинства их, с другой — к безвозвратной потере некоторых из них.
Непосредственной причиной этой потери был случившейся в начале 90-х годов, а может быть и ранее, в помещении Н. пожар, истребивший большую часть его рукописей. Огорчению, произведенному этим несчастием, приписывают обыкновенно постигшую Н. в 1693 г. психическую болезнь, которая выразилась во временном ослаблении памяти и умственных способностей.
Чтобы докончить начатое в предыдущем изображение характера Н., остается заметить, что, по Уйтстону, Н. имел робкий и подозрительный характер, а по Флемстиду — он "всегда казался недоступным, гордым и жадным к похвалам" и никогда "не мог выносить противоречия". Самомнительный и надменный в отношении других людей, Н. отличался, однако же, скромностью перед наукой и вечной истиной. Ясно сознавая, что все его блестящие открытия составляют только ничтожную часть величественных тайн природы, он говорил: "Я не знаю, чем кажусь свету; но я сравниваю себя с ребенком, который, ходя по берегу моря, собирает гладкие камни и красивые раковины, а между тем, великий океан глубоко скрывает истину от моих глаз". Существенное улучшение в материальном положении Н. произошло только в 1695 г., когда вновь назначенный канцлер казначейства Карл Монтегю, впоследствии лорд Галифакс, дал ему должность смотрителя Монетного двора (warden), с жалованьем в 750 фн. стерл. в год. Было бы, однако же, заблуждением думать, что эта должность, смененная в 1699 г. на еще более высокую должность директора Монетного двора (Master and Worker of the Mint), с вдвое большим окладом жалованья, была правительственной наградой за ученые заслуги Н.Дело объясняется самыми обыкновенными житейскими отношениями. Лорд Галифакс, хотя и бывший слушателем лекций Н. в Кембриджском университете, но, как вождь партии вигов, едва ли ему особенно симпатизировавший, был женат тайным браком на его племяннице, молодой, красивой и умной женщине, которой он завещал после смерти большую часть своего имения, а ее дяде 100 фн.
стерл. пожизненного дохода. Высказанное сейчас утверждение, что не ученые заслуги Н. были причиной его возвышения, находит себе подтверждение также и в том обстоятельстве, что в самом ученом мире полное признание этих заслуг последовало не ранее 1699 г., когда он, вместе с двумя братьями Бернулли, Лейбницем и Ремером, был избран в число восьми иностранных членов Парижской акад. наук. К еще более позднему сроку относится проявление того же признания в Англии. Здесь оно выразилось в 1703 г. в избрании Н., повторявшемся затем ежегодно до самого конца его жизни, в президенты лондонск. королевского общества. Членом последнего он, по представлению епископа салисбюрийского Барда, сделался в 1675 г., когда еще не имел почти никакой известности, что и выразилось в очень скромном тоне его письменной благодарности обществу за избрание. Если что может быть признано правительственной наградой Н. за его ученые заслуги, так это возведение его королевой Анной в 1705 г. в рыцарское достоинство, дававшее ему право на титул "сэр". С переходом Н. на должность смотрителя, а затем и директора Монетного двора, он был навсегда потерян для преподавания, так как совсем оставил Кембридж и жил то в Лондоне, то в Кенсингтоне.Последним проявлением его связей с Кембриджским унив. было состоявшееся в 1701 г. вторичное его избрание в число представителей Университета в парламенте, оказавшееся еще более бесплодным, чем первое. Потеря, понесенная преподаванием в лице Н., по-видимому, в значительной мере должна быть распространена и на самую науку, так как все ученые работы Н.
, известные нам за сколько-нибудь значительные, относятся к эпохе, предшествующей 1696 г. Следует ли видеть причину этого в многочисленности служебных занятий или в общем ослаблении умственной энергии, явившемся результатом упомянутой выше психической болезни, мы, по недостатку данных, сказать не можем. Недугом, сведшим Н. в могилу, была каменная болезнь. Похороны Н., погребенного в Вестминстере, отличались торжественностью, но они не были делом ни правительства, ни английского общества. Устройство их всецело принадлежало родственникам покойного и, частью, лондонскому королевскому обществу наук, в качестве представителей которого (но не правительства) в похоронах участвовали, и даже держали шнурки балдахина, великий канцлер, два герцога и три графа. Также не участвовали ни правительство, ни английское общество и в сооружении памятников покойному. Великолепный мраморный памятник с надписью, заканчивающеюся словами: "Sibi gratulentur mortales, tale tantumque extitisse humani generis decus", был поставлен на могиле наследниками и родственниками покойного, а находящаяся перед часовней Trimty-College в Кембридже мраморная статуя Н., работы Рубильяка, с надписью: "Qui genus humanum ingenio superavit", была сооружена на средства автора известной в свое время "Оптики" д-ра Роберта Шмита.
Из математических работ Н. по своему значению в истории науки первое место занимает анализ бесконечно малых, представившийся ему в форме метода флюкций, открытие которого находилось в тесной связи с другими математическими работами автора и, прежде всего, с относящимися к разложению степени бинома.
Так как разложение, в случае целого положительного показателя, давно найденное индусами, сделалось известным в Зап. Европе еще в XVI стол., то открытием, принадлежащим в этой области Н., было собственно разложение степени бинома в случаях дробных и отрицательных показателей. Рассматривая найденный Валлисом и приведенный в его "Arithmetica inlinitorum" квадратуры кривых видау = (1 — x2)m
при m = 0, 1, 2, 3 и т. д., Н. удалось еще в 1665 или 1666 г. подметить мультипликативный способ образования биномиальных коэффициентов, вместо которого ранее употреблялся (по крайней мере, со времен Михаила Штифеля) аддитивный, исходящий из известного предложения . Предположив затем, что найденный им способ справедлив также и тогда, когда т не есть положительное целое число, он представил в виде ряда площадь кругового сегмента и нашел разложение (1—x2)1/2=1—1/2x2—1/8x4—1/16x6—..., в справедливости которого убедился, с одной стороны, возвышением (возведением) в квадрат второй части, а с другой — непосредственным извлечением квадратного корня из 1—x2 по находящемуся в его распоряжении способу приближенного вычисления этого корня помощью десятичных дробей. Результаты этих исследований были изложены в мемуаре "De analysi per aequationes numero terminorum infinitas", который еще в 1660 г. был сообщен автором Барроу, пославшему его в июле того же года Коллинсу для представления лорду Брункеру, но появился в печати только в 1711 г.
В нем, однако, не было сообщено автором самое главное, именно подмеченный им способ образования биномиальных коэффициентов, и вышеупомянутые разложения производились при посредстве извлечения квадратного корня и деления. В том же мемуаре рассматривается также и обращение рядов, т. е. задача представления х из z=х—1/2x2+1/3х3—1/4х4+1/5x5—... в виде ряда, расположенного по возрастающим степеням z.
Несмотря на неосновательность употребленного при решении этой задачи метода, Н. все-таки удалось найти совершенно точный результат x=z+1/2z2+1/6z3+1/24z4+1/120z5+..., представляющий в сущности экспоненциальный ряд, так как данное выражение z соответствует z=log(1+x), откуда ez=1+x.
Ряд этот в упомянутом мемуаре останавливался на члене — z5. Его дальнейшее развитие находится в написанном несколько позже небольшом мемуаре "De serie progressionum continuanda" ("Opuscula Newtoni", I, стр. 22—23), содержащем развитие и еще нескольких других подобных рядов (выражающих, именно, как это было известно и самому Ньютону, sin z, cos z и arcsin z), причем законы его не доказываются, а выводятся помощью индукции. В другом небольшом мемуаре "Demonstratio resolutionis aequationum affeclarum" H. останавливается также и на вопросе о сходимости рядов, для целей которого он пользуется рядом х+х2+х3+..., каждый член которого при х=1/2 — равняется сумме всех следующих за ним членов, а в случае, рассматриваемом Н., то есть при х .Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 1294 | |
2 | 1193 | |
3 | 1141 | |
4 | 1124 | |
5 | 919 | |
6 | 712 | |
7 | 676 | |
8 | 660 | |
9 | 656 | |
10 | 651 | |
11 | 623 | |
12 | 622 | |
13 | 617 | |
14 | 609 | |
15 | 601 | |
16 | 597 | |
17 | 596 | |
18 | 574 | |
19 | 551 | |
20 | 544 |