Поиск в словарях
Искать во всех

Большая Советская энциклопедия - движение (в геометрии)

Движение (в геометрии)

Движение в геометрии, преобразования пространства, сохраняющие свойства фигур (размеры, форму и др. ) Понятие Д. сформировалось путем абстракции реальных перемещении твердых тел. Д. евклидова пространства — геометрическое преобразование пространства, сохраняющее расстояния между точками. Д. называют собственным или несобственным в зависимости от того, сохраняет ли оно или меняет ориентацию, Д. есть ортогональное преобразование

Собственное Д. на плоскости может быть задано в прямоугольной системе координат (х, у) посредством следующих формул:

х = xcosj — ysinj + a,

у = xsinj + ycosj + b,

показывающих, что совокупность всех собственных Д. на плоскости зависит от трёх параметров а, b и j, которые характеризуют соответственно параллельный перенос плоскости на вектор (а, b) и её поворот вокруг начала координат на угол j Всякое собственное Д. может быть представлено либо как параллельный перенос, либо как вращение вокруг некоторой точки. Любое несобственное Д. представимо в виде произведения (последовательного осуществления) параллельного переноса вдоль некоторого направления и симметрии относительно прямой, имеющей то же самое направление. Собственное Д. в пространстве есть или вращение вокруг оси, или параллельный перенос, или же может быть представлено в виде винтового движения (вращения вокруг оси и параллельного переноса в направлении этой оси).

Несобственное Д. в пространстве есть либо симметрия относительно плоскости, либо может быть представлено в виде произведения симметрии относительно плоскости на вращение вокруг оси, перпендикулярной этой плоскости, либо в виде произведения симметрии относительно плоскости на перенос в направлении вектора, параллельного этой плоскости, Д. в пространстве аналитически может быть представлено посредством линейного преобразования с ортогональной матрицей, определитель которой равен 1 или -1, в зависимости от того, является Д. собственным или несобственным, Понятие Д. переносится в римановы пространства, в пространства аффинной связности. Важную роль понятие Д. играет в римановых пространствах теории относительности (сильная асимметрия гравитационных полей накладывает ограничения на движения твёрдых тел в таких пространствах). Д. может быть принято в качестве основного понятия при аксиоматическом построении геометрии. В этом случае вместо аксиом конгруэнтности вводятся аксиомы Д. Конгруэнтность отрезков, углов и др. фигур определяется через понятие Д. (фигуры называются конгруэнтными, если одна переходит в другую при помощи некоторого Д.). Совокупность Д. образует группу

Лит.: Адамар Ж., Элементарная геометрия, пер. с франц., ч. 1,3 изд., М., 1948; ч 2, [2 изд.], М.. 1951; Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд., М., 1967: Александров П. С., Лекции по аналитической геометрии, М., 1968.

Э. Г. Позняк.

Большая советская энциклопедия. — М.: Советская энциклопедия

1969—1978

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое движение (в геометрии)
Значение слова движение (в геометрии)
Что означает движение (в геометрии)
Толкование слова движение (в геометрии)
Определение термина движение (в геометрии)
dvizhenie (v geometrii) это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины