Большая Советская энциклопедия - эрмитов оператор
Связанные словари
Эрмитов оператор
бесконечномерный аналог эрмитова линейного преобразования (см. Эрмитова форма). Линейный ограниченный оператор А в комплексном гильбертовом пространстве (См. Гильбертово пространство) и называется эрмитовым, если для любых двух векторов х и у этого пространства выполняется равенство (Ax, у) = (х, Ау), где (х, у) — скалярное произведение в Н. Примерами Э. о. являются интегральные операторы (см. Интегральные уравнения), для которых ядро К (х, у) задано в ограниченной области и является непрерывной функцией такой, что ;
в этом случае К (х, у) называется эрмитовым ядром. Понятие Э. о. обобщается и на неограниченные линейные операторы в гильбертовом пространстве. Э. о. играют значительную роль в квантовой механике, представляя удобный способ математического описания наблюдаемых величин, характеризующих физическую систему.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978