Большая Советская энциклопедия - факторный анализ
Связанные словари
Факторный анализ
раздел статистического анализа многомерного (См. Статистический анализ многомерный),. объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц. Основное предположение Ф. а. заключается в том, что корреляционные связи между большим числом наблюдаемых переменных определяются существованием меньшего числа гипотетических ненаблюдаемых переменных или факторов. В терминах случайных величин – результатов наблюдений X1,..., Xn общей моделью Ф. а. служит следующая линейная модель:
(*),
,
где случайные величины fj суть общие факторы, случайные величины Ui суть факторы, специфические для величин Xi и не коррелированные с fj, а εi; суть случайные ошибки. Предполагается, что k < n задано, случайные величины εi независимы между собой и с величинами fj и Ui и имеют Еεi = 0, Dεi = σ2i. Постоянные коэффициенты aij называются факторными нагрузками (нагрузка i-й переменной на j-й фактор). Значения aij, bi, и σ2i считаются неизвестными параметрами, подлежащими оценке. В указанной форме модель Ф. а. отличается некоторой неопределённостью, т.к. n переменных выражаются здесь через n + k других переменных. Однако уравнения (*) заключают в себе гипотезу о ковариационной матрице, которую можно проверить. Например, если факторы fj некоррелированы и cij – элементы матрицы ковариаций между величинами Xi, то из уравнений (*) следует выражение для cij через факторные нагрузки и дисперсии ошибок:
, 1 ни факторные нагрузки, ни сами факторы не определяются однозначно, т.к. в уравнении (*) факторы fj могут быть заменены любым ортогональным преобразованием. Это свойство модели используется в целях преобразования (вращения) факторов, которое выбирается так, чтобы наблюдаемые величины имели бы максимально возможные нагрузки на один фактор и минимальные нагрузки на остальные факторы. Существуют различные практические способы оценки факторных нагрузок, имеющие смысл в предположении, что Xi,..., Xn подчиняются многомерному нормальному распределению с ковариационной матрицей С = {сij}. Выделяется Максимального правдоподобия метод, который приводит к единственным оценкам для cij, но для оценок aij даёт уравнения, которым удовлетворяет бесчисленное множество решений, одинаково хороших по статистическим свойствам.
Ф. а. возник и первоначально разрабатывался в задачах психологии (1904). Область его приложения значительно шире – Ф. а. находит применение при решении различных практических задач в медицине, экономике, химии и т.д. Однако многие результаты и методы Ф. а. пока ещё не обоснованы, хотя практики ими широко пользуются. Математическое строгое описание современного Ф. а. – задача весьма трудная и до сих пор в полной мере не решенная.
Лит.: Лоул и Д., Максвелл А., Факторный анализ как статистический метод, пер. с англ., М., 1967; Харман Г., Современный факторный анализ, пер. с англ., М., 1972.
А. В. Прохоров.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978