Большая Советская энциклопедия - гаусса формулы
Связанные словари
Гаусса формулы
формулы, относящиеся к различным разделам математики и носящие имя К. Гаусса.
1) Квадратурные Г. ф. — формулы вида
в которых узлы xk и коэффициенты Ak не зависят от функции f (x) и выбраны так, что формула точна (т. е. Rn = 0) для произвольного многочлена степени 2n 1. В отличие от квадратурных формул Ньютона — Котеса, узлы в квадратурных Г. ф., вообще говоря, не являются равноотстоящими. Если р (х) ≥ 0 и
то для любого натурального n имеется единственная квадратурная Г. ф. Эти формулы имеют большое практическое значение, т.к. в ряде случаев они дают значительно большую точность, чем квадратурные формулы с тем же числом равноотстоящих узлов. Сам Гаусс исследовал (1816) случай р (х) ≡ 1.
2) Г. ф., выражающая полную кривизну (См. Полная кривизна) К поверхности через коэффициенты её линейного элемента; в координатах, для которых ds2 = λ(du2 + dv2), Г. ф. имеет вид
Эта формула была опубликована в 1827 и показывает, что полная кривизна не меняется при изгибании поверхности. Она составляет содержание одного из основных предложений созданной Гауссом внутренней геометрии (См. Внутренняя геометрия) поверхности.
3) Г. ф. для сумм Гаусса:
Эта формула была использована Гауссом (1801) в одном из доказательств закона взаимности квадратичных вычетов (См. Квадратичный вычет)
где р и q — нечётные простые числа, а 0, то
где Г (х) — Гамма-функция. Опубликована в 1812.
С. Б. Стечкин.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978