Большая Советская энциклопедия - геодезическая астрономия
Связанные словари
Геодезическая астрономия
раздел практической астрономии (См. Практическая астрономия), наиболее тесно связанный с геодезией и картографией; изучает теорию и методы определения широты φ и долготы λ места, а также азимута а направления на земной предмет и местного звёздного времени s из астрономических наблюдений при геодезических и картографических работах. Т. к. эти наблюдения производятся в полевых условиях, то Г. а. часто называют полевой астрономией. Точка земной поверхности, в которой широта, долгота и азимут определены из астрономических наблюдений, называется астрономическим пунктом (См. Астрономический пункт). Предмет Г. а. состоит в изучении: а) переносных астрономических инструментов, б) теорий наблюдения небесных светил и методов определения φ, λ, а и s и в) методов обработки результатов астрономических наблюдений. В Г. а. применяются малые, или переносные, астрономические инструменты, позволяющие измерять зенитные расстояния и направления на небесные светила, а также горизонтальные углы между различными направлениями. Основными инструментами в Г. а. служат: Универсальный инструмент, полевой Хронометр и радиоприёмник для приёма сигналов времени.
В Г. а. разработан ряд способов астрономических наблюдений, различающихся в зависимости от того, какие величины определяются (время, широта, долгота или азимут), какие светила для этого наблюдаются (звёзды или Солнце) и как и какие величины непосредственно измеряются при наблюдениях небесного светила (зенитное расстояние z, высота h, азимут а* и момент Т прохождения светила через избранную плоскость). Выбор этих способов зависит от поставленной задачи, точности её решения, наличия инструментов и т. д. При этом Небесные координаты наблюдаемого светила, а именно его прямое восхождение а и склонение α, считаются известными; они приводятся в астрономических ежегодниках и каталогах звёзд.
Соединив на небесной сфере (рис.) полюс PN, зенит места Z и наблюдаемое светило а дугами больших кругов, получим т. н. параллактический треугольник PNZσ, в котором угол при вершине Z есть дополнение азимута а* светила до 180° и угол при вершине PN равен часовому углу t светила.
Все способы астрономических определений основаны на решении параллактического треугольника после измерения его некоторых элементов (см. Сферическая астрономия). Так, измерив зенитное расстояние Z светила в момент Т по хронометру и зная широту φ места, можно определить часовой угол t светила из выражения
cosz = sinφ sin δ + cosφ cosδ cost
и по равенству t = s — α= Т + u — α найти поправку u к показанию хронометра и местное звёздное время s. Зная поправку хронометра u и измерив зенитное расстояние Z светила, можно определить широту φ места. Поправку хронометра выгодно определять из наблюдений звёзд в первом вертикале (См. Первый вертикал), а широту места — в меридиане, т. е. в кульминации небесного светила. Если измерить зенитные расстояния двух звёзд, расположенных в меридиане к Ю. или С. от зенита места, то тогда
φ = δS — zS = δN — zN.
Особенно удобны способы, основанные на измерении окулярным микрометром (См. Окулярный микрометр) малых разностей зенитных расстояний северных и южных звёзд в меридиане (см. Талькотта способ). В способах соответственных высот отмечают моменты T1 и T2 прохождений двух звёзд через один и тот же Альмукантарат. Если известна φ, то получают u (см. Цингера способ), а если известна u, то определяют φ (см. Певцова способ). Из наблюдений серии равномерно распределённых по азимуту звёзд на постоянной высоте 45° или 30° определяют φ и λ (см. Мазаева способ).
Азимут а* небесного светила определяют, измеряя его часовой угол или зенитное расстояние и зная широту φ места наблюдения. Прибавляя к азимуту наблюдаемого светила (обычно Полярной звезды) горизонтальный угол Q между ним и земным предметом, получают азимут а земного предмета.
Разность долгот двух пунктов равна разности местных звёздных времён в этих пунктах или разности поправок хронометра, отнесённых к одному физическому моменту по известному ходу часов (См. Ход часов), так что λ2 — λ1 = s2 — s1 = (T + u2) — (Т + u1) = u2 — u1 + T2 — T1. Долготы λ отсчитываются от меридиана Гринвича. Поэтому λ = s — S = u — U. Поправки хронометра u относительно местного звёздного времени s определяют из наблюдений звёзд, а U относительно гринвичского звёздного времени S — из приёма ритмических сигналов времени по радиотелеграфу. В современных высокоточных работах ошибки определения широты, долготы и азимута не превышают ± 0,5".
Лит.: Цингер Н. Я., Курс практической астрономии, М., 1924: Вентцель М. К., Полевая астрономия, ч. 1—2, М., 1938—40; Блажко С. Н. . Курс практической астрономии, М. — Л., 1951; Цветков К. А., Практическая астрономия, 2 изд., М., 1951; Кузнецов А. Н., Геодезическая астрономия, М., 1966.
А .В. Буткевич.
Рис. к ст. Геодезическая астрономия.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978