Большая Советская энциклопедия - конструктивная математика
Связанные словари
Конструктивная математика
абстрактная наука о конструктивных процессах, человеческой способности осуществлять их и о их результатах — конструктивных объектах. Абстрактность К. м. проявляется прежде всего в том, что в ней систематически применяются две абстракции: абстракция потенциальной осуществимости и абстракция отождествления. Абстракцию потенциальной осуществимости используют, когда отвлекаются от практических ограничений конструктивных возможностей в пространстве, времени и материале. Абстракцию отождествления используют, когда говорят о двух в том или ином смысле одинаковых объектах как об одном и том же объекте. В К. м. не применяется характерная для теоретико-множественной математики абстракция актуальной бесконечности, связанная с рассмотрением никогда не завершаемых процессов как бесконечно продолженных и тем самым как бы завершенных.
Конструктивный процесс, результатом которого является объект, одинаковый с А, называется построением объекта А. Высказывания, связанные с человеческой способностью осуществлять конструктивные процессы, часто формулируются в К. м. в виде теорем существования, утверждающих, что существует объект, удовлетворяющий каким-то требованиям. Под этим подразумевают, что построение такого объекта потенциально осуществимо, т. е. что владеют способом его построения. Это понимание теорем существования отличается от их понимания в теоретико-множественной математике, что вынуждает строить для К. м. свою логику, отличную от обслуживающей теоретико-множественную математику классической математической логики, — конструктивную математическую логику.
Понятия конструктивного процесса и конструктивного объекта не определяются в К. м. В таких общих определениях и нет надобности, поскольку в К. м. обычно имеют дело не с конструктивными процессами и конструктивными объектами вообще, а с определёнными видами тех и других.
Простейшим видом конструктивных объектов являются слова в фиксированном алфавите, т. е. ряды букв этого алфавита (слово «буква» понимается здесь как «элементарный знак», т. е. как «знак, частями которого мы не интересуемся»; алфавит — это набор букв). Конструктивный процесс, результатом которого является слово, состоит в данном случае в выписывании этого слова буква за буквой. Частным случаем слов являются натуральные числа, которые мы рассматриваем как слова в алфавите 01, начинающиеся с нуля и, кроме того, нуля не содержащие, т. е. как слова 0, 01, 011, 0111,... Добавляя к этому алфавиту знак минус «—» и знак дроби «/», получают возможность строить рациональные числа как некоторые слова в алфавите 01 — /. Т. о., рациональные числа оказываются конструктивными объектами.
Естественно, возник вопрос о построении действительных чисел в рамках К. м. и, далее, вопрос о включении математического анализа в эти рамки. Эти цели достигнуты на основе уточнённого понятия Алгоритма. Каким из известных уточнений этого понятия (Тьюринга машина, рекурсивные функции, нормальные алгорифмы) здесь пользоваться, при этом несущественно. В дальнейшем под «алгорифмом» будет пониматься Нормальный алгорифм.
Конструктивной последовательностью рациональных (натуральных) чисел будет называться алгорифм, перерабатывающий всякое натуральное число в рациональное (натуральное) число. Без существенного ограничения общности можно считать конструктивную последовательность рациональных чисел алгорифмом в алфавите 01 — /ab. Запись такого алгорифма будет осуществляться как слово в алфавите 01. О конструктивной последовательности рациональных чисел