Большая Советская энциклопедия - риманова геометрия
Связанные словари
Риманова геометрия
многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка сравнительно с размерами области). Р. г. получила своё название по имени Б. Римана, который заложил её основы в 1854.
Понятие о римановой геометрии. Гладкая поверхность в евклидовом пространстве, рассматриваемая с точки зрения измерений, производимых на ней, оказывается двумерным пространством, геометрия которого (так называемая Внутренняя геометрия), будучи приближённо евклидовой в малом (в окрестности любой точки она совпадает с точностью до малых высшего порядка с геометрией касательной плоскости), точно не является евклидовой; к тому же, как правило, поверхность неоднородна по своим геометрическим свойствам. Поэтому внутренняя геометрия поверхности и есть не что иное, как Р. г. двух измерений, а сама поверхность есть двумерное риманово пространство.
Так, при измерениях на участках земной поверхности, малых в сравнении с размерами земного шара, можно с успехом применять обычную планиметрию, однако результаты измерений на больших участках обнаруживают существенное отклонение от законов планиметрии. Перенесение этих понятий на многомерные пространства приводит к общей Р. г. В основе Р. г. лежат три идеи. Первая идея — признание того, что вообще возможна геометрия, отличная от евклидовой, — была впервые развита Н. И. Лобачевским (См. Лобачевский), вторая — это идущее от К. Ф. Гаусса понятие внутренней геометрии поверхностей и её аналитический аппарат в виде квадратичной формы, определяющей линейный элемент поверхности; третья идея — понятие об n-мерном пространстве, выдвинутое и разработанное в 1-й половине 19 в. рядом геометров. Риман, соединив и обобщив эти идеи (в лекции «О гипотезах, лежащих в основании геометрии», прочитанной в 1854 и опубликованной в 1867), ввёл общее понятие о пространстве как непрерывной совокупности любого рода однотипных объектов, которые служат точками этого пространства (см. Геометрия, раздел Обобщение предмета геометрии, Пространство в математике), и перенёс на эти пространства представления об измерении длин малыми шагами.
После опубликования работ Римана его идеи привлекли внимание ряда математиков, которые развивали дальше аналитический аппарат Р. г. и устанавливали в ней новые теоремы геометрического содержания. Важным шагом было создание итальянскими геометрами Г. Риччи-Курбастро и Т. Леви-Чивита на рубеже 20 в. так называемого тензорного исчисления (См. Тензорное исчисление), которое оказалось наиболее подходящим аналитическим аппаратом для разработки Р. г. Решающее значение имело применение Р. г. в создании А. Эйнштейном общей теории относительности, которое было триумфом не только абстрактной геометрии, но и идей о связи геометрии и физики, выдвинутых Лобачевским и Риманом. Это привело к бурному развитию Р. г. и её разнообразных обобщений. В настоящее время Р. г. вместе с её обобщениями представляет собой обширную область геометрии, которая продолжает успешно развиваться, причём особое внимание уделяется вопросам глобального характера.
Определение риманова пространства. К строгому определению риманова пространства можно подойти следующим образом. Положение точки n-мерного многообразия определяется n координатами x1, x2,..., xn. В евклидовом n-мерном пространстве расстояние между любыми двумя точками X, Y в надлежаще выбранных координатах выражается формулой
где Δxi — разности координат точек X, Y. Соответственно в римановом пространстве в окрестности каждой точки А могут быть введены координаты x1,..., xn так, что расстояние между точками X, Y, близкими к А, выражаются формулой
где ε таково, что