Большая Советская энциклопедия - секвенций исчисление
Связанные словари
Секвенций исчисление
(позднелатинское sequentia — последовательность, следствие)
секвенциальные исчисления, исчисления способов заключений, модификации понятия логического исчисления (См. Исчисление), в которых основными объектами преобразования являются не формулы, а т. н. секвенции, т. е. выражения вида A1,..., Al → B1,..., Bm, где → аналогична знаку выводимости, A1,..., Al и B1,..., Bm — произвольные формулы; первые — образующие антецедент секвенции, вторые — её сукцедент. При l, m ≥ 1 секвенция A1,..., Al → B1,... Bm интерпретируется как формула
A1&... &A1 ⊃B1 ∨...∨ Bm.
(& — знак конъюнкции, ⊃ — импликации, ∨ — дизъюнкции, см. Логические операции), секвенция с пустым антецедентом интерпретируется как истина, а секвенция с пустым сукцедентом — как ложь (и, следовательно, секвенция →, состоящая из одной стрелки, — как противоречие). Аксиомами (исходными секвенциями) в С. и. являются все секвенции вида С → С (и только они). Правила вывода делятся на т. н. структурные и логические. Первые кодифицируют допустимые изменения «формульного состава» антецедента и сукцедента, вторые — введение в секвенции различных логических символов. Структурные правила — это «уточнение» (добавление произвольной формулы к антецеденту или сукцеденту), «сокращение» (вычёркивание повторяющихся формул), перестановка произвольных формул в антецеденте или сукцеденте, а также «сечение»
(латинскими буквами обозначаются произвольные формулы, греческими — строчки формул, разделённых запятыми, над чертой пишется посылка правила, под чертой — заключение). Логические правила вывода имеют для секвенциального классического исчисления высказываний (См. Исчисление высказываний) следующий вид:
;