Большая Советская энциклопедия - штурма правило
Связанные словари
Штурма правило
правило, позволяющее находить непересекающиеся интервалы, содержащие каждый по одному действительному корню данного алгебраического многочлена с действительными коэффициентами. Дано в 1829 Ж. Ш. Ф. Штурмом. Для любого многочлена f(x) без кратных корней (См. Кратный корень) существует система многочленов f(x) = fo(x), f1(x),..., fs(x), для которой выполняются следующие условия:
1) fk(x) и fk+1(x), k=0, 1,..., s—1 не имеют общих корней,
2) многочлен fs(x) не имеет действительных корней,
3) из fk(α)= 0, 1≤ k ≤ s — 1, следует, что fk-1(α)fk+1(a) < 0, 4) из f(α) = 0 следует, что произведение f(x)f1(x) возрастает в точке α.
Пусть ω(c) — число перемен знаков в системе f(c), f1 (c),.. .,fs (c). Тогда, если действительные числа а и b (а < b) не являются корнями многочлена f(x), то разность ω(a) — ω(b) неотрицательна и равна числу действительных корней многочлена f(x), заключённых между а и b. Т. о., числовую прямую можно разбить на интервалы, в каждом из которых содержится один действительный корень многочлена f(x).
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978