Поиск в словарях
Искать во всех

Большая Советская энциклопедия - симметрическая матрица

Симметрическая матрица

квадратная Матрица S = llsikll, в которой любые два элемента, симметрично расположенные относительно главной диагонали, равны между собой: sik = ski (i, k = 1,2,..., n). С. м. часто рассматривается как матрица коэффициентов некоторой квадратичной формы (См. Квадратичная форма); между теорией С. м. и теорией квадратичных форм существует тесная связь.

Спектральные свойства С. м. с действительными элементами: 1) все корни λ1, λ2,..., λn характеристического уравнения (См. Характеристическое уравнение) С. м. действительны; 2) этим корням соответствуют n попарно ортогональных собственных векторов (См. Собственные векторы) С. м. (nпорядок С. м.). С. м. с действительными элементами всегда представима в виде: S'= ODO-1

где О Ортогональная матрица, а

.

Большая советская энциклопедия. — М.: Советская энциклопедия

1969—1978

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое симметрическая матрица
Значение слова симметрическая матрица
Что означает симметрическая матрица
Толкование слова симметрическая матрица
Определение термина симметрическая матрица
simmetricheskaya matrica это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины