Большая Советская энциклопедия - тригонометрическое уравнение
Связанные словари
Тригонометрическое уравнение
алгебраическое уравнение относительно тригонометрической функций неизвестного аргумента. Для решения Т. у., пользуясь различными соотношениями между тригонометрическими функциями (См. Тригонометрические функции), преобразуют Т. у. к такому виду, чтобы можно было определить значения одной из тригонометрических функций искомого аргумента. После этого корни Т. у. получаются с помощью обратных тригонометрических функций (См. Обратные тригонометрические функции). Например, sin х + sin 2x + sin Зх = 0 можно привести к виду 2 sin 2x cos х + sin 2x = 0 или sin 2x (2cos х + 1) = 0, откуда sin 2x = 0 или же cos х = —1/2; это даёт решения Т. у. х = Arc sin 0 = и х = Arc cos ( — ) = 2/3π(Зn ± ), где n — произвольное целое число (положительное или отрицательное).
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978