Словарь логики - формализация
Формализация
(от лат. forma — вид, образ) — отображение результатов мышления в точных понятиях и утверждениях. При Ф. изучаемым объектам, их свойствам и отношениям ставятся в соответствие некоторые устойчивые, хорошо обозримые и отождествимые материальные конструкции, дающие возможность выявить и зафиксировать существенные стороны объектов.
Ф. уточняет содержание путем выявления его формы и может осуществляться с разной степенью полноты. Выражение мышления в естественном языке можно считать первым шагом Ф. Дальнейшее ее углубление достигается введением в обычный язык разного рода специальных знаков и созданием частично искусственных и искусственных языков.Логическая Ф. направлена на выявление и фиксацию логической формы выводов и доказательств. Полная Ф. теории имеет место тогда, когда совершенно отвлекаются от содержательного смысла ее исходных понятий и положений и перечисляют все правила логического вывода, используемые в доказательствах. Такая Ф. включает в себя три момента: 1) обозначение всех исходных, неопределяемых терминов; 2) перечисление принимаемых без доказательства формул (аксиом); 3) введение правил преобразования данных формул для получения из них новых формул (теорем).
В формализованной теории доказательство не требует обращения к содержанию используемых понятий, их смыслу. Доказательство является здесь последовательностью формул, каждая из которых либо есть аксиома, либо получается из аксиом по правилам вывода.Проверка такого доказательства (но не его отыскание) превращается в чисто механическую процедуру, которая может быть передана вычислительной машине. Ф. играет существенную роль в уточнении научных понятий. Многие проблемы не могут быть не только решены, но даже сформули рованы, пока не будут формализованы связанные с ними рассуждения.
Так обстоит дело, в частности, с широко используемым понятием алгоритма и вопросом о том, существуют ли алгоритмически неразрешимые проблемы. Только с Ф. арифметики появилась возможность поставить вопрос, охватывает ли формализованная арифметика всю содержательную арифметику. Как показал К. Гёдель, достаточно богатая содержанием теория (охватывающая арифметику натуральных чисел) не может быть полностью отображена в ее формализованной версии; как бы ни пополнялась дополнительными утверждениями последняя, в теории всегда останется невыявленный, неформализованный остаток (см.: Гёделя теорема). .