Словарь логики - гёделя теорема
Гёделя теорема
важнейший результат, полученный австрийским логиком и математиком К. Гёделем (1906-1978). В 1931 г. в статье «О формально неразрешимых предложениях Principia Mathematica и родственных систем» Гёдель доказал теорему о неполноте: если система Z (содержащая арифметику натуральных чисел) непротиворечива, то в ней существует такое предложение А, что ни само А, ни его отрицание не могут быть доказаны средствами Z На примере анализа формальной системы, сформулированной в фундаментальном трехтомном труде англ. математиков и логиков А. Уайтхеда и Б. Рассела «Principia Mathematica», Гёдель показал, что в достаточно богатых содержательных нормальных системах имеются неразрешимые предложения, т. е. предложения, которые недоказуемы и одновременно неопровержимы. Значение Г. т. состоит в том, что она показала неосуществимость программы формализации математики, выдвинутой немецким математиком Д. Гильбертом. Как показывает Г. т., даже арифметику натуральных чисел невозможно формализовать полностью, ибо в формализованной арифметике существуют истинные предложения, которые оказываются неразрешимыми. С философско-мето-дологической точки зрения значение Г. т. заключается в том, что она показывает невозможность полной формализации человеческого знания. .
Рейтинг статьи:
Комментарии:
Вопрос-ответ:
Что такое гёделя теорема
Значение слова гёделя теорема
Что означает гёделя теорема
Толкование слова гёделя теорема
Определение термина гёделя теорема
gedelya teorema это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):