Словарь логики - несобственные символы
Несобственные символы
: Точность). Примером неточного может служить понятие «молодой человек». В двадцать лет человек определенно молод, в сорок его уже нельзя назвать молодым. Где-то между этими возрастными границами лежит довольно широкая область неопределенности, когда нельзя с уверенностью ни назвать человека молодым, ни сказать, что он уже немолодой.
Граница класса людей, к которым приложимо понятие «молодой человек», лишена четкости. Неточными являются эмпирические характеристики, подобные «высокий», «большой», «отдаленный» и т. д. Неточны понятия «дом», «куча» и т. п., т. к. существуют ситуации, когда мы не можем с уверенностью утверждать, употребимо рассматриваемое понятие или нет.
Причем сомнения в приложимости понятия к конкретным вещам не удается устранить ни путем привлечения новых фактов, ни дополнительным анализом самого понятия. Если, напр., происходит постепенная разборка дома, трудно сказать, в какой именно момент оставшееся можно назвать не домом, а развалинами. Употребление неточных понятий способно в определенных ситуациях вести к парадоксальным заключениям, о чем говорят открытые еще в древности парадоксы «Куча», «Лысый» и т.
п. Обращение с неточными понятиями требует, таким образом, известной осторожности. Н. имеет степени, или градации, и более точные понятия во многих случаях предпочтительнее неточных. Вполне оправдано поэтому стремление к уточнению используемых понятий. Но оно должно тем не менее иметь свои пределы.Даже в науке значительная часть понятий является неточной. И это связано не столько с субъективными и случайными ошибками отдельных ученых, сколько с самой природой научного познания. Долгое время в логике и математике не обращалось внимание на трудности, связанные с неточными и в особенности с размытыми понятиями. От понятий требовалась точность, а все нечеткое, размытое объявлялось недостойным интереса.
В последние десятилетия эта ригористическая установка потеряла привлекательность. Построены логические теории, учитывающие своеобразие рассуждений с неточными понятиями. Успешно развивается математическая теория т. наз. размытых множеств, имеющая дело с нечетко очерченными совокупностями объектов. Изучение проблем Н. одно из условий приближения логики к практике обычного мышления, имеющего дело по преимуществу с неточными понятиями. .