Физическая энциклопедия - больцмана статистика
Больцмана статистика
статистич. метод описания физ. св-в систем, содержащих большое число невзаимодействующих ч-ц, движущихся по законам классич. механики (т. е. св-в классич. идеального газа). Создана австр. физиком Л. Больцманом в 1868-71. В Б. с. рассматривается распределение ч-ц идеального газа по импульсам и координатам, но не в фазовом пространстве всех ч-ц, как в статистич.
механике Гиббса (см. ГИББСА РАСПРЕДЕЛЕНИЯ), а в фазовом пр-ве координат и импульсов одной ч-цы (для газа одинаковых невзаимодействующих ч-ц ф-цию распределения можно представить в виде произведения вЂодночастичных’ ф-ций распределения). Согласно Б. с., фазовое пр-во разбивается на множество малых ячеек объёмом Gi, причём каждая ячейка должна содержать достаточно большое число ч-ц Ni (с энергией ?i).
Фиксированное распределение ч-ц по этим ячейкам определяет микроскопич. состояние газа. Макроскопич. состояние газа полностью характеризуется набором чисел Ni. Значение Gi соответствует максимально возможному числу микроскопич. состояний в ячейке i. Для подсчёта числа возможных способов осуществления данного макроскопич. состояния объём ячейки фазового пр-ва должен быть фиксирован (в этом случае совокупность микроскопич.
состояний счётное множество). До создания квант. механики ед. фазового объёма выбиралась произвольно. С открытием квантовомеханич. неопределённостей соотношения выяснилось, что ед. объёма фазового пр-ва, имеющего шесть измерений (три координаты и три проекции импульса ч-цы), нельзя выбрать меньше h3. Т.о., современная Б. с. использует принципы квант.
механики, и получаемое на основе Б.с. распределение ч-ц представляет собой частный случай квант. статистик (когда из-за малой плотности газа можно пренебречь квант. эффектами). В Б.с. предполагается, что ч-цы распределяются по разл. состояниям независимо друг от друга и что они различимы между собой. Число различных возможных микроскопич.
состояний, соответствующих заданному макроскопич. состоянию газа, наз. статистическим весом состояния. Статистич. вес определяется числом разл. способов, к-рыми можно распределить N=SiNi ч-ц по ячейкам размером Gi по NI ч-ц в каждой ячейке, и равен: WB=N!ПiGiNi/Ni!. (1) Здесь перестановки ч-ц в пределах каждой ячейки рассматриваются как разл.состояния. При подсчёте статистич. веса W надо, однако, учитывать, что перестановки тождественных ч-ц не меняют состояния, и поэтому WB следует уменьшить в N! раз, так что W=Пi(GiNi/Ni!). (2) Это правило подсчёта состояний, основанное на квантовомеханич. принципе неразличимости тождественных ч-ц, лежит в основе совр. Б. с. Только при таком определении статистич.
веса возможно определить энтропию S (в ед. k) как величину, пропорц. логарифму статистич. веса: S=lnW. (3) Ф-ла (3) была получена амер. физиком Дж. Гиббсом ещё до создания квант. механики. Он показал, что присутствие множителя N в (1) приводит к появлению в выражении для энтропии (3) слагаемого NInN, не имеющего физ. смысла, т. к. энтропия должна быть пропорц.N (аддитивна). Все микроскопич. состояния, соответствующие данному макроскопич. состоянию, равновероятны, поэтому вероятность макроскопич. состояния пропорц. статистич. весу W. В статистич. равновесии энтропия максимальна при заданных энергии и числе ч-ц, что соответствует наиб. вероятному распределению (Больцмана распределению) .
Для получения распределения Больцмана в явном виде нужно найти абс. экстремум ф-ции SiNiln(Gi/Ni)-bSi?iNi-lSiNi (b и l множители, определяемые из условий постоянства числа ч-ц газа N=SiNi и его полной энергии ?=Si?iNi) и воспользоваться ф-лой Стирлинга InNi=Ni/(lnNi-1) при Ni->1. Для ср. чисел заполнения i-того состояния с энергией ?i распределение Больцмана имеет вид: ni=Ni/Gi=ехр((m-?i)/kT), (4) где m хим.
потенциал, определяемый из условия SiNi=N. Б. с. применима к разреженным мол. газам и к плазме в газовом разряде. Для плотных газов, когда существенно вз-ствие между ч-цами, следует пользоваться распределением Гиббса. .