Физическая энциклопедия - четность
Четность
квантовомеханич. хар-ка состояния микрочастицы (молекулы, атома, ат. ядра, элем. ч-цы), отображающая св-ва симметрии волн. ф-ции этой ч-цы относительно зерк. отражений (пространственной инверсии). В процессах, обусловленных сильным и эл.-магн. вз-ствиями, имеет место закон сохранения Ч.: физ. система, обладавшая в нач. состояния зерк.
симметрией определ. типа, сохраняет эту симметрию во все последующие моменты времени. Сохранение Ч. приводит к ряду отбора правил для эл.-магн. излучения атомов и ат. ядер, для яд. реакций и реакций взаимопревращений элем. ч-ц. Закон сохранения Ч. можно проиллюстрировать на примере излучающей антенны, у к-рой геом. форма и распределение токов в каждый момент времени обладают зерк.
симметрией. Согласно закону сохранения Ч., такой же симметрией будет обладать диаграмма направленности излучения антенны. В слабом взаимодействии, обусловливающем, в частности, бета-распад ядер, закон сохранения Ч. нарушается. Возможность такого нарушения была предсказана в 1956 кит.физиками Ли Цзундао и Янг Чжень-нином и подтверждена экспериментально в 1957 By Цзяньсюн с сотрудниками (США) в b-распаде ядер, а также Л. Ледерманом с сотрудниками (США) в распаде мюона. Ю. Г. Абов, В. М. Лобашёв и др. обнаружили слабое несохранение Ч. при нуклон-нуклонном вз-ствии. Имеются эксперим. указания на слабое несохранение Ч. в эл.
-магн. излучении атомов. На рис. а изображена схема опыта By. Образец, содержащий радиоакт. изотоп 60Со, помещён в магн. поле кругового тока (В магн. индукция). Это поле ориентирует магн. моменты ядер кобальта вдоль В (установка помещена в криостат при темп-ре ок. 1 К). Маленькой стрелкой указано направление скоростей эл-нов внутри проводника с током.
Как и в примере с антенной, вся система зеркально симметрична относительно плоскости, в к-рой течёт круговой ток. При выполнении закона сохранения Ч. интенсивность излучения эл-нов b-распада должна быть одинаковой по обе стороны этой плоскости. В эксперименте же наблюдалась резкая асимметрия: по одну сторону плоскости испускалось на 40% больше эл-нов, чем по другую. Т. о., из опыта By следует, что изучаемая система не обладает зерк. симметрией. Ещё в 1952 амер. физик Э. Вигнер с сотрудниками отметили возможность того, что при зерк. отражении эл-ны переходят в положительно заряж. ч-цы той же массы позитроны и вообще все ч-цы переходят в соответствующие античастицы. Зерк. отражение, сопровождающееся заменой всех ч-ц системы на античастицы, было названо Л. Д. Ландау комбинированной инверсией. Симметрия законов природы относительно комбинированной инверсии приводит для истинно нейтральных частиц и систем к закону сохранения комбинированной чётности.При замене закона сохранения Ч. на закон сохранения комбинированной Ч. схема опыта By перестаёт быть зеркально симметричной, т. к. зерк. отображением этого опыта (рис., б) будет позитронный b-распад ядра антикобальта (состоящего из антипротонов и антинейтронов) в магн. поле кругового тока позитронов антивещества проводника. (Поскольку заряд позитрона положителен, при том же направлении носителей заряда проводника знак тока изменится, что приведёт к изменению знака В.
) Сильное нарушение закона сохранения Ч. установлено для всех процессов слабого вз-ствия. В квант. теории Ч. явл. физ. величиной, характеризующей основные и возбуждённые состояния микрочастиц. При соблюдении закона сохранения Ч. последняя может иметь только два значения: +1 и -1. Под влиянием слабого вз-ствия к состоянию с данной Ч.
добавляется малая примесь состояния с противоположной Ч. В атомах и в ат. ядрах эта примесь не превышает 10-6-10-7 (однако в ядрах могут быть спец. причины усиления эффектов несохранения чётности на неск. порядков). Поэтому каждая ч-ца с хорошей точностью обладает определённой внутренней чётностью Р, равной либо + 1, либо -1. Ч-цы с Р=+1 наз.
чётными, а с Р=-1 -нечётными. Напр., pВ°-мезон нечётен. Внутр. Ч. ч-ц с полуцелым спином фермионов неопределённы, но они противоположны Ч. соответствующих античастиц. Это обусловливает, напр., отрицат. внутр. Ч. мезонов, составленных из кварка и антикварка с нулевым орбит. моментом (p, К, r, w, j и т. д.). Для ч-ц с целым спином (бозонов) Ч. ч-цы и античастицы одинакова.
Ч. системы из ч-ц с орбит. моментами С›l1,. . ., С›ln равна P1...Pn(-1)l1+...ln где Р1, . . ., Рn внутр. Ч. ч-ц системы, l1 . . ., ln неотрицат. целые числа. У квантов эл.-магн. поля (фотонов) не существует ни внутр. Ч., ни орбит. момента. Ч. фотона определяется его мультипольностью (см. МУЛЬТИПОЛЬ). Ч. электрического 2l-поля равна (-1)l, а Ч. магнитного 2l-поля равна (-1)l+1.
Поэтому Ч. физ. микросистемы сохраняется при испускании или поглощении электрич. мультипольного фотона с чётным l или магн. мультипольного фотона с нечётным l, а в остальных случаях меняется на противоположную. Это приводит к правилам отбора по Ч. для эл.-магнитного излучения молекул, атомов и ядер. .