Физическая энциклопедия - кипение
Кипение
п.) жидкость заметно перегрета. Величина перегрева зависит от ряда физ. и хим. св-в как самой жидкости, так и граничных тв. поверхностей. Опыты показывают, что тщательно очищенные жидкости, лишённые растворённых газов (воздуха), Рис. 1. Распределение темп-ры в жидкости над горизонт. поверхностью нагрева при пузырьковом кипении. можно при соблюдении особых мер предосторожности перегреть на десятки градусов без закипания.
Когда такая перегретая жидкость вскипает, то процесс К. протекает бурно, напоминая взрыв. Теплота перегрева расходуется на парообразование, поэтому закипевшая жидкость быстро охлаждается до темп-ры насыщ. пара, с к-рым она находится в равновесии. Возможность перегрева чистой жидкости без К. объясняется затруднённостью возникновения начальных маленьких пузырьков (зародышей): энергетич. затраты на образование пузырька значительны из-за большой поверхностной энергии пузырька. Если же жидкость содержит растворённые газы и разл. мельчайшие взвеш. ч-цы, то уже незначит. перегрев (на десятые доли градуса) вызывает устойчивое и спокойное К., при к-ром нач. зародышами паровой фазы служат газовые пузырьки, образующиеся на поверхности тв. ч-ц. Осн. центры парообразования находятся в точках нагреваемой поверхности, где имеются мельчайшие поры с адсорбиров. газом, а также разл. неоднородности, включения и налёты, снижающие мол. сцепление жидкости с поверхностью. Для роста образовавшегося пузырька необходимо, чтобы давление пара в нём несколько превышало сумму внеш. давления, давления вышележащего слоя жидкости и капиллярного давления, к-рое зависит от кривизны поверхности пузырька. Это условие осуществляется, когда пар и окружающая его жидкость, находящаяся с паром в тепловом равновесии, имеют темп-ру, превышающую Ткип. В повседневной практике наблюдается именно этот вид К., его наз. пузырьковым. Если повышать темп-ру поверхности нагрева Т (увеличивать температурный напор, измеряемый разностью Т-Tкип), то число центров парообразования резко возрастает, всё большее количество оторвавшихся пузырьков всплывает в жидкости, вызывая её интенсивное перемешивание. Это приводит к значит. росту теплового потока от поверхности нагрева к кипящей жидкости (росту теплоотдачи). Соотв. возрастает и кол-во образующегося пара. При достижении максимального (критич.) значения теплового потока (для кипящей воды =1500 кВт/м2 при T-Tкип=25-30В°С) начинается второй, переходный режим К. При этом режиме теплоотдача и скорость парообразования резко снижаются, т. к. большая доля поверхности нагрева покрывается сухими пятнами из-за слияния образующихся пузырьков пара. Когда вся поверхность обволакивается тонкой паровой плёнкой, возникает третий, плёночный режим К., при к-ром теплота от раскалённой поверхности передаётся к жидкости через паровую плёнку путём теплопроводности и излучения. Все три режима К. можно наблюдать в обратном порядке, когда массивное металлич. тело погружают в воду для его закалки: вода закипает, охлаждение тела идёт вначале медленно (плёночное К.), потом скорость охлаждения начинает быстро увеличиваться (переходное К.
) и достигает наибольших значений в конечной стадии охлаждения (п у з ы р ь к о в о е К.). Теплоотвод в режиме пузырькового К. явл. одним из наиболее эфф. способов охлаждения (рис. 2). Рис. 2. Изменение плотности теплового потока q и коэфф. теплоотдачи a. при кипении воды под атм. давлением в зависимости от температурного напора DT: А область слабого образования пузырьков; Б пузырьковое кипение; В плёночное кипение, постепенный переход к сплошной паровой плёнке; Г стабильное плёночное кипение,qмакс макс.
значение q. Растворение в жидкости нелетучего в-ва понижает давление её насыщ. пара и повышает Tкип. Это позволяет определять мол. массу растворённых в-в по вызываемому ими повышению Ткип растворителя. К. возможно не только при нагревании жидкости в условиях пост. давления. Снижением внеш. давления при пост. темп-ре можно также вызвать перегрев жидкости и её вскипание (за счёт уменьшения темп-ры насыщения).
Этим объясняется, в частности, явление кавитации образование паровых полостей в местах пониж. давления жидкости (напр., в вихревой зоне за гребным винтом теплохода). Понижение Ткип с уменьшением внеш. давления лежит в основе определения барометрич. давления. К. при пониж. давлении применяют в холодильной технике, в физ. эксперименте (см.
ПУЗЫРЬКОВАЯ КАМЕРА). .