Физическая энциклопедия - нелинейная оптика
Нелинейная оптика
е. поляризация среды нелинейно зависит от Е. Н. о. имеет много общего с нелинейной теорией колебаний (см. НЕЛИНЕЙНЫЕ СИСТЕМЫ), нелинейной акустикой и др. Историческая справка. Начало совр. этапа в развитии Н. о. (1961) связано с созданием лазеров, к-рое открыло возможности изучения и использования нелинейных явлений фактически во всех областях физ.
и прикладной оптики. С появлением лазеров оптика получила источники когерентного излучения большой мощности. С помощью импульсных лазеров можно получить интенсивности света I=107-109 Вт/см2. Мощные лазерные системы позволяют получить I=1016 Вт/см2. Напряжённости светового поля Е (I пропорц.Е2) в таких пучках сравнимы или даже превышают внутриатомные поля. В таких световых нолях возникают новые оптич. эффекты и существенно изменяется характер уже известных явлений. Вместе с тем ясные представления о том, что законы линейной оптики (суперпозиции принцип) носят приближённый характер и применимы лишь для не слишком сильных световых полей, существовали и до появления лазеров.
Ок. 50 лет назад С. И. Вавиловым были поставлены эксперименты с целью обнаружения нелинейных явлений. В 1923 Вавилов и В. Л. Лёвшин обнаружили уменьшение поглощения света урановым стеклом с ростом интенсивности света и объяснили это тем, что в сильном эл.-магн. поле большая часть атомов (или молекул) находится в возбуждённом состоянии и уже не может поглощать свет. Считая, что это лишь один из множества возможных оптич. нелинейных эффектов, Вавилов впервые ввёл термин «Н. о.». В 50-х гг. Г. С. Горелик теоретически рассмотрел возможность наблюдения ряда нелинейных оптич. эффектов с помощью фотоэлектрич. умножителей. Один из них смещение оптич. дублета с выделением разностной частоты, лежащей в диапазоне СВЧ (г е т е р о д и н и р о в а н и е с в ет а),наблюдали в 1955 А.Форрестер, Р. Гудмундсен и П. Джонсон (США). К Н. о. в широком смысле относятся и хорошо известные электро-оптические эффекты (линейный Поккельса эффект и квадратичный Керра эффект). Оказалось, что влияние низкочастотного электрич. поля на показатель преломления среды имеет ту же физ. природу, что и такие нелинейно-оптич. явления, как генерация оптич.
гармоник и смешение частот (си. ниже). В 1961 П. Фрайкен с сотрудниками (США) открыл эффект удвоения частоты света в кристаллах генерацию 2-й гармоники. В 1962 наблюдалось утроение частоты (генерация 3-й гармоники). В 1961-63 в СССР (Р. В. Хохлов, С. А. Ахманов) и в США (Н. Бломберген) были получены фундаментальные результаты в теории нелинейных оптич.
явлений, заложившие теор. основы Н. о. В 1962-63 открыто и объяснено вынужденное комбинационное рассеяние света, что послужило толчком к изучению вынужденного рассеяния др. видов. В 1965 обнаружена самофокусировка света. При этом мощный световой пучок, распространяясь в среде, во многих случаях не испытывает обычной, т. н. дифракционной, расходимости, а, напротив, самопроизвольно сжимается. В 1965 были созданы параметрические генераторы света, в к-рых нелинейные оптич. эффекты используются для генерирования когерентного оптич. излучения, плавно перестраиваемого по частоте в широком диапазоне длин волн l. В 1967 началось исследование нелинейных явлений, связанных с распространением в среде сверхкоротких (длительностью до 10-12 с) световых импульсов. С 1969 развиваются методы нелинейной и активной спектроскопии (см. ниже). Наиболее важные разделы совр. Н. о.: волновая Н. о., исследования нелинейной поляризации среды и нелинейная спектроскопия, прикладная Н.о. Взаимодействие сильного светового поля со средой.Элем. процесс, лежащий в основе вз-ствия света со средой,возбуждение атома или молекулы световым полем и переизлучение света возбуждённой ч-цей. Матем. описанием этих процессов явл. ур-ния, связывающие поляризацию Р ед. объёма среды с напряжённостью поля E (м а т е р и а л ь н ы е у р а в н е н и я). Линейная оптика базируется на приближённом соотношении: Р=cЕ, (1) где c диэлектрическая восприимчивость, зависящая только от св-в среды (см.
ДИЭЛЕКТРИКИ). Согласно (1), переизлучённое поле имеет ту же частоту, что и падающее, следовательно, ур-ние (1) не описывает ни возникновения оптич. гармоник, ни др. нелинейные эффекты. Это означает, что соотношением (1) можно пользоваться лишь в области слабых световых полей. Суть приближений, лежащих в основе (1), можно понять, обращаясь к классич.
модели осциллятора, используемой для описания вз-ствия света с в-вом. Поведение атома или молекулы в световом поле эквивалентно колебаниям осциллятора. Характер отклика ат. осциллятора на световую волну можно установить, сравнивая E с напряжённостью внутриатомного поля Ea»e/a2»108 -109 В/см (е заряд эл-на, a ат. радиус), определяющего силы связи в ат.
осцилляторе. В пучках нелазерных источников Е»1-10 В/см, т. е. Е .