Энциклопедия техники - безвихревое течение
Безвихревое течение
Кинематическое свойство безвихренности течения идеального газа связано с его термодинамическими параметрами так называем теоремой Л. Крокко, из которой следует, что при постоянных во всём течении энтропии и полной энтальпии оно является либо безвихревым, либо винтовым (вектор завихренности параллелен вектору скорости). Плоскопараллельное течение такого типа всегда будет безвихревым.
Изучение Б. т. существенно упрощается тем, что система уравнений аэрои гидродинамики сводится к одному уравнению для потенциала скорости (φ). В несжимаемой жидкости потенциал скорости удовлетворяет уравнению Лапласа, которое имеет в качестве фундаментальных решений потенциалы источника, диполя и гидродинамических особенностей более высокого порядка (см. Источники и стоки гидродинамические), (см. Источников и стоков метод), причём в силу линейности любая их суперпозиций также является решением. Для важного случая плоского Б. т. несжимаемой жидкости существует комплексный потенциал — аналитическая функция комплексного переменного, действительная и мнимая части которой являются соответственно потенциалом скорости и функцией тока. Задачи об обтекании профилей (см. Профиля теория) и решёток профилей и определении действующих на них сил, о глиссировании, истечении струй, ударе о жидкость и другие были решены благодаря возможности применения методов теории функций комплексного переменного, например метода конформных преобразований.
Изучение Б. т. сжимаемого газа — более трудная задача; так как уравнение для потенциала нелинейно. Для плоских течений оно может быть приведено к линейному путём преобразования годографа (см. Годографа метод), часто используемого в задачах дозвуковой аэродинамики (струйные течения, определение аэродинамических характеристик профилей и др.).
При обтекании тонких тел упрощение уравнения потенциала проводится на основе возмущений теории. Дозвуковые и сверхзвуковаые возмущённые течения описываются линейными уравнениями, трансзвуковые — нелинейными. Б. т., проходя через искривленный скачок уплотнения, становится вихревым. Однако для достаточно слабого скачка завихренность пропорциональна кубу его интенсивности, и с большой точностью можно считать, что течение остаётся безвихревым. Поток за скачком конечной интенсивности остаётся безвихревым, если угол наклона скачка к направлению однородного набегающего потока всюду одинаков (например, при осесимметричном сверхзвуковом обтекании конуса).
Одним из наиболее распространённых методов расчёта сверхзвукового Б. т. является характеристик метод, особенно эффективный в приложении к плоским течениям, где характеристики в плоскости годографа (эпициклоиды) имеют универсальный вид независимо от структуры течения в физической плоскости. Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия
Главный редактор Г.П. Свищев
1994