Энциклопедия техники - компрессор газотурбинного двигателя
Компрессор газотурбинного двигателя
Для реализации термодинамического цикла с постоянным давлением в камере сгорания в авиационном газотурбинном двигателе используются только лопаточные К. (см. Лопаточные машины). Повышение давления в К. происходит в результате преобразования механической энергии, подводимой к валу К. от турбины, в потенциальную энергию воздуха. Во всех типах лопаточных К. передача механической энергии привода воздуху в соответствии с Эйлера формулой реализуется в роторе путём воздействия на поток аэродинамических сил, возникающих при обтекании лопаток рабочих колёс; при этом увеличивается и кинетическая и потенциальная энергия воздуха. В неподвижных элементах К. — направляющих аппаратах компрессора или диффузорах — часть кинетической энергии преобразуется в потенциальную.
К. газотурбинного двигателя состоит, как правило, из несколько последовательно расположенных ступеней (см. Ступень компрессора, турбины); по форме средней поверхности тока в них различают осевые (ОК), центробежные (ЦК), диагональные (ДК) и комбинированные, состоящие из ступеней разных типов (осецентробежные — ОЦК, оседиагональные). Форма поверхности тока определяет особенности преобразования энергии в рабочем колесе: в ОК работа сжатия примерно равна изменению кинетической энергии в относительном движении; в ЦК повышение давления в большей степени происходит вследствие изменения кинетической энергии в переносном движении, равного работе центробежных сил. Увеличение радиуса средней поверхности тока в ЦК и ДК увеличивает работу, передаваемую воздуху: при одинаковой окружной скорости на внешнем диаметре рабочего колеса работа ступени ЦК в 2—3 раза превышает работу осевой ступени.
При высоких (πк*) К. обычно делится на несколько последовательных, механически не связанных каскадов (групп ступеней), каждый из которых приводится отдельной турбиной; используются одно-, двухи трёхкаскадные К. Первая (по потоку) группа ступеней называется К. низкого давления (КНД), К. газогенератора — К. высокого давления; средний каскад К. трехкаскадного двигателя — К. среднего давления. КНД двухконтурного турбореактивного двигателя состоит из вентилятора и (в некоторых случаях) подпорных ступеней, устанавливаемых во внутреннем контуре. В авиационном газотурбинном двигателе КНД составляется из осевых ступеней. ОК позволяет получить производительность до 200 кг/с с 1 м2 лобовой площади на входе в первое рабочее колесо. Политропический коэффициент полезного действия может превышать 90% (см. Коэффициент полезного действия компрессора, турбины).
Число ступеней ОК авиационного газотурбинного двигателя достигает 17; с конца 70-х гг., несмотря на рост (π)к* число ступеней в ОК вновь создаваемых двигателей уменьшается — средняя удельная работа на ступень увеличивается с 20—25 до 40—60 кДж*с/кг, главным образом за счёт увеличения окружной скорости до 500 м/с и более.
В каждом каскаде ОК рабочие колёса жёстко связаны друг с другом сваркой, болтовыми соединениями, торцовыми шлицами или стяжным болтом. Наиболее распространённая конструкция ротора барабанно-дисковая. Лопатки рабочих колёс крепятся в ободе диска с помощью замков преимущественно типа «ласточкин хвост» или набираются в кольцевой паз на ободе диска. Лопатки направляющих аппаратов крепятся в кольце, устанавливаемом в наружном корпусе К., и либо выполняются консольными, либо объединяются по внутреннему диаметру кольцом, на котором укреплена уплотнительная обечайка, покрытая истираемым материалом, или сотовая. На соответствующем участке поверхности ротора выполняются в этом случае несколько кольцевых гребешков, образующих лабиринтное уплотнение, предотвращающее перетекание воздуха из области за направляющим аппаратом на вход в него.
Центробежный К. состоит из входного направляющего аппарата, рабочего колеса (РК), безлопаточного и лопаточного диффузора и радиально-осевого канала со спрямляющим аппаратом. В авиационных конструкциях используются преимущественно полуоткрытые РК, представляющие собой диск с выполненными за одно с ним лопатками. В РК поток отклоняется в тангенциальном и радиальном направлениях. На выходном участке лопатки выполняются либо радиальными, либо загнутыми назад («реактивное» колесо). Только в ЦК первых турбореактивных двигателей использовались «активные» колёса с лопатками, загнутыми на выходном участке в направлении вращения. Наиболее высокий коэффициент полезного действия и благоприятную форму характеристики имеют ЦК с реактивными колёсами, ЦК бывают двухступенчатыми или их комбинируют с осевыми ступенями. Степень повышения давления в ЦК зависит в основном от окружной скорости u2 на внешнем диаметре РК и отношения D2/D1 и достигает в первых ступенях 6—8, во второй и последней ступенях ОЦК — 3—4. Политропический коэффициент полезного действия 83—86% и существенно зависит от степени повышения давления и размеров К.
Конструкция ДК аналогична конструкции ЦК. Степень повышения давления в ДК также определяется значением u2, отношением D2/D1 и углом выхода потока из рабочего колеса и достигает (π)к* = 3—5 при политропическом коэффициенте полезного действия 85—87%; на коэффициент полезного действия значительно влияют диаметр компрессора и зазор между лопатками РК и корпусом, зависящий от жёсткости конструкции и тепловых деформаций. Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия
Главный редактор Г.П. Свищев
1994