Поиск в словарях
Искать во всех

Энциклопедия техники - механика сплошных сред

 

Механика сплошных сред

изучает движение и равновесие газов, жидкостей и деформируемых твёрдых тел. Моделью реальных тел в М. с. с. является сплошная среда (СС); в такой среде все характеристики вещества являются непрерывными функциями пространственных координат и времени. При деформации СС её частицы (их размеры значительно больше размеров атомов и молекул, но значительно меньше характерных размеров исследуемой теоретически или экспериментально системы) механически взаимодействуют между собой и с окружающими среду границами. Наряду с механическими взаимодействиями в некоторых случаях существенны взаимодействия немеханической природы — тепловое, химическое и др., а также взаимодействие среды с заполняющим пространство полем — электромагнитным, гравитационным, которое тоже может рассматриваться как особого рода СС.

Для описания поведения деформируемой СС вводят, помимо плотности, ряд параметров, характеризующих состояние её частиц;

кинематические параметры — вектор перемещения и вектор скорости частицы, тензор её деформации и тензор скоростей деформации и др.;

динамические параметры — тензор напряжений, тензор скоростей изменения напряжения и др.;

термодинамические параметры — внутреннюю энергию, энтропию, температуру и др.;

параметры физико-химического состояния — удельные электрические заряд, намагниченность и поляризации, концентрации отдельных химических компонентов и т. д.

Проблема построения конкретных моделей СС состоит в установлении системы определяющих среду величин и системы соотношений между ними, а также различных дополнительных условий, которые позволяют сформулировать математические задачи о нахождении законов движения частиц и законов изменения всех интересующих в конкретных условиях механических, физико-химических и других характеристик среды при её движениях и деформациях.

При теоретическом изучении движений конечных объёмов среды система определяющих соотношений представляет собой конечную систему дифференциальных или интегральных, интегро-дифференциальных функциональных уравнений, в которых искомыми функциями являются введённые параметры частиц среды, а независимыми переменными — координаты точек пространства, где происходит движение среды, и время (так называемая точка зрения Эйлера на движение среды) или координаты (числа), индивидуализирующие отдельные частицы (например, координаты частиц среды в начальный момент времени), и время (так называемая точка зрения Лагранжа на движение среды).

При построении частных моделей СС используются общие физические законы и определённые дополнительные гипотезы феноменологического характера, опирающиеся на теоретические предпосылки к на данные опытов. Прежде всего используются основные законы механики — законы сохранения массы и импульсов (см. Сохранения законы, Импульсов теорема, Неразрывности уравнение). В случаях, когда система определяющих параметров содержит внутренний момент количества движения частиц, необходимо независимо от уравнения импульсов использовать дополнительно уравнение моментов импульса. В большом числе важных случаев одних только уравнений механики для описания движений СС недостаточно — необходимо добавить к ним закон сохранения энергии (см. Энергии уравнение), уравнения электродинамики, уравнения физико-химической кинетики.

Для нахождения решений уравнений М. с. с. должны быть сформулированы граничные или краевые условия. Оказывается также, что в рамках некоторых моделей М. с. с. не удаётся получить решение математических задач в классе непрерывных функций, а необходимо искать его в классе обобщённых функций с разрывами непрерывности на некоторых поветях. На поверхности разрыва с двух её сторон параметры среды должны быть связаны определенными условиями (см. Контактная поверхность, Разрывы гидродинамические, Тангенциальные разрывы). Эти условия, как и краевые условия, также получаются на основе использования законов сохранения массы, импульса, энергии и — в соответствующих случаях — законов электродинамики, физической химии и т. д.

Первые математические модели М. с. с. возникли ещё в XVIII в. Это — модель идеальной жидкости в гидродинамике и модель идеально упругого тела в механике твёрдых деформируемых тел. Позднее, в начале XIX в., в гидродинамике появилась модель несжимаемой вязкой жидкости — ньютоновская жидкость (см. Ньютона теория обтекания). Методы решения задач механики с использованием этих классических моделей М. с. с. достигли высокой степени совершенства и позволяют получать значительные результаты при изучении явлений природы и в технических приложениях. Так, теория упругости (механика идеально упругого тела) является и сейчас основой расчёта многих машин и сооружений. Механика идеальной и ньютоновской жидкостей служит основой многих расчётных методов в проблемах аэродинамики к авиастроения, судостроения, гидроэнергетики и др.

Однако поведение многих материалов в реальных условиях не описывается закономерностями, лежащими в основе классических моделей М. с. с. (см., например, статью Реального газа эффекты). В связи с этим классические модели механики идеальной и ньютоновской жидкостей потребовали развития на случаи, когда существенными являются сжимаемость среды, явления теплопроводности и диффузии, выделение теплоты вследствие химических реакций, перенос излучения и др. (см., например, Кинетика физико-химическая, Переноса явления), что привело к появлению новых моделей. Развитие этих моделей механики идеальной и вязкой жидкости стимулировалось задачами авиационной, ракетной и космической техники, энергетики, химической технологии, двигателестроения, лазерной техники и др. и привело к выделению самостоятельных областей механики жидкости и газа, таких, как газовая динамика, теория тепломассообмена в движущихся средах, теория горения газов, радиационная газодинамика и др.

Проблемы астрофизики, термоядерного синтеза, создания магнитогидродинамических генераторов, технологических процессов с использованием жидких металлов и другое стимулировали развитие моделей механики жидкости и газа, учитывающих электромагнитные и гравитационные взаимодействия среды и поля, и привели к обособлению таких областей механики жидкости и газа, как теория низкотемпературной и высокотемпературной плазмы, магнитогидродинамика, электрогидродинамика (см., например, Электромагнитные явления), механика магнитных жидкостей и др. В механике деформируемого твёрдого тела разработаны и широко используются модели пластического тела, учитывающие возникновение остаточных (не исчезающих после снятия нагрузки) деформаций в теле, подверженном достаточно большим нагрузкам, и модели, учитывающие ползучесть тел, то есть нарастание деформаций со временем при неизменных внешних нагрузках. Продолжающееся развитие этих моделей вызывается потребностями машиностроения (в том числе авиастроения) и строительства в связи с увеличением напряжённости конструкций и, следовательно, ростом требовании к их прочности как при обычных, так и при повышенных температурах (см. Тепловая прочность). Так возникли области механики твёрдого деформируемого тела: теория пластичности, теория ползучести, теория вязкоупругости и вязкопластичности, теория деформирования композиционных материалов и др. Одна из серьёзных проблем механики твёрдого деформируемого тела — создание моделей СС и схем явлений, позволяющих предсказывать разрушение конструкций. Эта задача всё ещё не имеет удовлетворительного решения. На пути её разрешения развиваются теории хрупкого разрушения (см. Механика разрушения), усталости, старения материалов и др.

В классических моделях М. с. с., а также и во многих современных моделях рассматриваются однородные среды. Однако многие среды являются макроскопически неоднородными (гетерогенными) и в некоторых из них необходимо учитывать относительное движение элементов среды. В таких случаях в М. с. с. вводятся модели взаимопроникающих сплошных сред. В этих моделях один и тот же объём пространства считается заполненным двумя или более СС, каждая из которых имеет свою плотность и свои значения определяющих параметров. Между заполняющими пространство средами существуют различные виды взаимодействия — механическое, тепловое и др. Примерами гетерогенных сред могут служить всевозможные смеси твёрдых, жидких и газообразных частиц; суспензии твёрдых частиц в жидкостях, эмульсии, водонасыщенные грунты, смеси порошкообразных материалов различной структуры (см. Порошковые материалы), композиционные материалы и т. п.

Одна из основных проблем М. с. с. состоит в адекватном приведении механических задач к задачам математическим. Так как во многих даже относительно простых случаях математические задачи М. с. с. оказываются неразрешимыми имеющимися математическими средствами, то к М. с. с. относят и исследования, связанные с разработкой математических методов решения задач М. с. с. Эти исследования, с одной стороны, состоят в возможном видоизменении и упрощении самих систем определяющих уравнений к постановок задач для них, а с другой — в разработке новых математических методов и алгоритмов решения сформулированных задач.

Задачи М. с. с. во многих случаях связаны с большим объёмом вычислений. Поэтому в М. с. с. всегда использовались наиболее совершенные вычислительные методы и вычислительная техника. Наряду с теорией атомных реакторов М. с. с. была первым крупным пользователем ЭВМ и продолжает оказывать сильное влияние на развитие современных вычислительных методов и вычислительной техники.

Одним из наиболее эффективных общих методов построения новых моделей СС, неоднократно использовавшимся и ранее, является вариационный метод. При помощи этого метода удаётся объединить на общей основе различные феноменологические и статистические подходы к построению механических и термодинамических моделей сплошных сред. Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия

Главный редактор Г.П. Свищев

1994

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое механика сплошных сред
Значение слова механика сплошных сред
Что означает механика сплошных сред
Толкование слова механика сплошных сред
Определение термина механика сплошных сред
mehanika sploshnyh sred это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины