Энциклопедия Кольера - озеро
Озеро
БАЙКАЛ
ВОСТОЧНОЕ ПОБЕРЕЖЬЕ ОЗ. ТАНГАНЬИКА, приуроченного к Восточно-Африканской зоне разломов.ПРОИСХОЖДЕНИЕ ОЗЕРНЫХ КОТЛОВИН
Озера заполняют котловины, которые имеют разный генезис. Поскольку процессы формирования этих котловин часто зависят от местных условий, озера концентрируются в определенных районах, например в Озерном округе на северо-западе Англии, озерном районе в Австрии и обширном поясе озер, охватывающем штаты Миннесота, Висконсин и Мичиган. На формирование озерных котловин влияют тектоническая активность, вулканизм, оползни, ледниковые процессы, карст и суффозия, флювиальные процессы, эоловые процессы, береговые процессы, аккумуляция органогенных отложений, подпруживание водотоков человеком или бобрами и падение метеоритов. Древнейшие и самые глубокие из ныне существующих озер возникли под влиянием тектонической активности, однако большинство озер образовалось благодаря ледниковым процессам. Тем не менее роль других перечисленных факторов тоже немаловажна.
Тектоническая активность. Тектонические впадины возникают в результате движений земной коры, и многие озерные бассейны тектонического происхождения занимают большую площадь и имеют древний возраст. Как правило, они очень глубокие. Тектонические процессы проявляются по-разному. Например, Каспийское море приурочено к прогибу на дне древнего моря Тетис. В неогене произошло поднятие, в результате которого обособилась Каспийская впадина. Ее воды постепенно опреснялись под воздействием атмосферных осадков и речного стока. Котловина оз. Виктория в Восточной Африке образовалась в результате сводового поднятия окружающей суши. Большое Соленое озеро в штате Юта тоже возникло благодаря тектоническому поднятию территории, через которую прежде осуществлялся сток из озера. Тектоническая активность часто приводит к образованию разломов (трещин в земной коре), которые могут превратиться в озерные котловины, если в этом районе затем произойдет взброс или если опустится блок, заключенный между разломами. В последнем случае говорят, что озерная котловина приурочена к грабену. Такое происхождение имеют несколько озер в пределах Восточно-Африканской рифтовой системы. Среди них оз. Танганьика, образовавшееся ок. 17 млн. лет и отличающееся очень большой глубиной (1470 м). На продолжении этой системы к северу находятся Мертвое море и Тивериадское озеро. Оба они очень древние. Максимальная глубина Тивериадского озера в настоящее время составляет всего 46 м. К грабенам приурочены также озера Тахо на границе штатов Калифорния и Невада в США, Бива (источник пресноводного жемчуга) в Японии и Байкал, вмещающий крупнейшую в мире массу пресной воды (23 тыс. км3), в Сибири.
ОЗЕРО ПАУЭЛЛ, образовавшееся в результате подпруживания р. Колорадо (США).Вулканическая деятельность приводит к образованию разнообразных озерных котловин от небольших кратеров округлой формы с низкими бортами (мааров) до крупных глубоких кальдер, формирующихся при излиянии магмы через боковой кратер, расположенный вблизи вершины вулкана, что приводит к обрушению вулканического конуса. Наглядным примером кальдерного озера является оз. Крейтер в Орегоне, образовавшееся при извержении вулкана Мазама ок. 6000 лет назад. Это живописное озеро почти округлой формы имеет глубину 608 м (седьмое в мире по глубине). Посреди озера расположен остров Уизард, возникший в результате более позднего извержения. Озера подобного типа встречаются в Японии и на Филиппинах. В вулканических районах озерные котловины могут также формироваться, когда горячая лава вытекает из-под более холодного поверхностного лавового горизонта, что способствует проседанию последнего (так образовалось оз. Йеллоустон), или в случае подпруживания рек и ручьев лавой или грязевым лавовым потоком при извержении вулканов. Именно так возникли котловины многих озер в Японии и Новой Зеландии.
ОЗЕРО В КРАТЕРЕ ПОТУХШЕГО ВУЛКАНА в Исландии.Оползни, подпруживая водные потоки, способствуют образованию озер. Однако если запруда разрушится или вода перельется через нее, эти озера вскоре исчезают. Например, в 1841 р.Инд на территории современного Пакистана была подпружена оползнем, возникшим в результате землетрясения, а через шесть месяцев "плотина" рухнула, и озеро длиной 64 км и глубиной 300 м было спущено за 24 часа. Озеро такого типа может оставаться стабильным, только если избыток воды отводится через устойчивые к эрозии твердые породы. Так, например, Сарезское озеро, образовавшееся на Восточном Памире в 1911, существует до сих пор и имеет глубину 500 м (десятое место по глубине среди озер мира). Ледниковая деятельность является наиболее эффективным фактором создания озерных котловин. Покровные ледники мощностью несколько километров, покрывавшие в геологически недавнее время большую часть Северной Америки и значительную часть Северной Европы, разными способами формировали озерные котловины, и большинство озер в этих районах имеет ледниковое происхождение. Например, много озер приурочено к котловинам выпахивания, которые образовались при движении ледников по разнородной поверхности. При этом ледники сносили рыхлые отложения. Тысячи озер, заполнивших такие котловины, встречаются на территории северной Канады, Норвегии и Финляндии, где занимают значительные площади.
ЧУДСКОЕ ОЗЕРО на границе Эстонии и России занимает котловину плейстоценового приледникового водоема.Каровые озера расположены на склонах гор в верховьях трогов. Для них характерны котловины, по форме напоминающие амфитеатры. В образовании лож таких озер принимают участие и процессы морозного выветривания. Фьордовые озера имеют вытянутую форму, крутые берега и U-образный поперечный профиль. Они занимают понижения на дне речных долин, переработанные и переуглубленные крупными ледниками. Наглядные примеры озер такого типа Лох-Несс в Шотландии и многие озера Норвегии. Отчасти ледниковыми процессами была сформирована группа озер, радиально расходящихся из одного центра в Озерном округе на северо-западе Англии. Сходное происхождение имеют и крупные озера северной Канады Атабаска, Большое Медвежье и Большое Невольничье. Глубина последнего достигает 640 м. Даже котловины Великих озер, имеющие сложный генезис, испытали воздействие ледников. Кроме того, озера образуются при подпруживании речных долин моренами. Наконец, во время отступания ледников под толщей отложений, вынесенных талыми ледниковыми водами за пределы ледника, оказались погребенными огромные глыбы мертвого льда. Многие из них растаяли только спустя сотни лет, когда улучшился климат, и на их месте возникли котловины, заполнившиеся водой.
См. также Ледники.
ЖИВОПИСНОЕ ОЗЕРО ЛЕДНИКОВОГО ПРОИСХОЖДЕНИЯ в национальном парке Глейшер (США).Карст и суффозия. Карстовые озера образуются, когда такие растворимые минералы и горные породы, как известняк, гипс и каменная соль, выносятся водой, причем формируются либо котловины на поверхности, либо подземные пустоты, кровля которых затем проваливается. Эти озера не обязательно бывают мелкими: так, оз. Жирот во Французских Альпах имеет глубину 99 м при площади всего 57 га.
Флювиальные процессы. В результате деятельности рек озера образуются несколькими способами: водобойные колодцы возникают у подножий водопадов; западины вырабатываются в скальном грунте текучими водами под воздействием процесса эворзии (когда высверливаются ямы за счет трения камней и другого абразивного материала о дно в водоворотах); преграждаются русла рек в ходе выноса речных наносов другими реками и их аккумуляции. Например, р.Миссисипи образовала оз. Сент-Крой около Сент-Пола (шт. Миннесота), подпрудив р.Сент-Крой, но затем сама была запружена ниже по течению наносами р.Чиппева, и в результате образовалось оз. Пепин. Наконец, в долинах с хорошо развитыми поймами, например, в долине р.Миссисипи в штатах Луизиана и Арканзас, в результате прорыва шеек меандров и русловых процессов отчленяются старичные озера, имеющие форму крупных извилин.
Эоловые процессы. В котловинах эолового происхождения встречаются озера, подпруженные эоловыми песками или заключенные среди дюн. Различают также дефляционные озера, приуроченные к котловинам выдувания, которые распространены в аридных или семиаридных районах Техаса, Южной Африки и Австралии. Происхождение дефляционных озер, иногда называемых плайями, не до конца выяснено, но, возможно, они иногда формируются за счет совместного действия ветрового выдувания и раскапывания грунта животными, которые используют их для водопоя.
Береговые процессы. При перемещении вдольберегового потока наносов морские бухты могут отчленяться песчаными барами и превратиться в озера. Если такой бар остается стабильным, образовавшееся соленое озеро затем опресняется. Процессы аккумуляции органогенных отложений. Озеро Окичоби во Флориде одно из наиболее известных озер, образованных в результате таких процессов. Хотя его котловина возникла при поднятии впадины на дне моря, первоначально оз. Окичоби было подпружено густой водной растительностью и скоплением ее остатков. Подпруживание водотоков человеком или бобрами. Плотины, построенные бобрами, могут достигать больших размеров длиной более 650 м, но они недолговечны. Непреднамеренная деятельность человека привела к созданию тысяч озер на месте карьеров и горных выработок, и, кроме того, специально строились плотины. При сооружении крупных плотин в Африке, возникли огромные водохранилища, в том числе Насер на р.Нил, Вольта на р.Вольта и Кариба на р.Замбези. Некоторые плотины возводились с целью производства электроэнергии для выплавки алюминия на базе крупных местных залежей бокситов.
Воздействие метеоритов. Вероятно, наиболее редкими и необычными озерными котловинами являются впадины, образованные в результате падения метеоритов. Достоверно выяснено, что одно из озер п-ова Унгава в пров. Квебек (Канада) приурочено к метеоритному кратеру Нуво-Квебек. Это округлое озеро расположено среди озер ледникового происхождения, имеющих неправильную форму.
ИСТОЧНИКИ ОЗЕРНЫХ ВОД
Чтобы называться озерной, котловина, образованная одним из описанных выше способов, безусловно, должна хотя бы эпизодически заполняться водой, которая может попадать в озеро различными путями. Во многие крупные озера в гумидных регионах значительная часть воды может поступать непосредственно от атмосферных осадков, выпадающих на поверхность озер. Например, питание оз. Виктория в Восточной Африке примерно на 75% атмосферное. Главным источником воды более мелких озер или озер более аридных районов обычно служит поверхностный сток рек и ручьев. Озера могут питаться грунтовыми водами, выходящими в подводной части озерной котловины. Многие озера, в частности ледникового происхождения, приурочены к котловинам, выработанным в толщах рыхлых водоносных отложений, и расположены ниже уровня грунтовых вод. В этом случае вода попадает в озеро или вытекает из него, просачиваясь через борта котловины. Существуют также ключевые озера, хотя бы частично получающие питание от подводных родников. Иногда из источников в озеро поступает огромное количество солей, захваченных при прохождении водотока через легкорастворимые породы (например, в Тивериадском озере). Самые пресные воды характерны для озер, питающихся исключительно атмосферными осадками. Тем не менее соленость озер зависит также от того, каким образом вода покидает озеро. Содержание минеральных солей в проточных озерах обычно близко их концентрации в питающем потоке. Озера, в котловинах которых происходит фильтрация воды как в озеро, так и из него, обычно пресные. Однако некоторые озера имеют приток воды, но не имеют стока, и вода лишь испаряется с их поверхности, в результате чего в водоемах повышается концентрация растворимых солей. В таких бессточных, или "закрытых", озерах (в противоположность "открытым") часто формируются высокоспециализированные сообщества растений и животных, например некоторых ракообразных или насекомых. Еще одним фактором, влияющим на соленость озер, является количество атмосферных осадков. Наконец, важное значение имеет характер горных пород, среди которых расположены озера. Так, озера в области Канадского щита в основном очень пресные, поскольку породы, по которым происходит сток воды, совершенно не растворимы. Существенным аспектом водного баланса озер являются темпы водообмена. Эта характеристика определяется либо временем полной смены воды в озере (в годах), который выражается через отношение объема озера к годовому стоку воды из него, либо через обратную величину, называемую коэффициентом водообмена водоема. Время полной смены воды может быть очень коротким одна неделя и менее, что соответствует коэффициенту водообмена 50 раз в год у водохранилищ, расположенных на реках выше плотин, но может быть и длительным до 500 лет, с годовым коэффициентом водообмена 0,002 (как у оз. Верхнего). Водоемы с более коротким циклом полной смены воды (и, соответственно, с высокими коэффициентами водообмена) быстрее очищаются от загрязняющих веществ и в целом имеют более низкие их концентрации.
ВЕЩЕСТВА, РАСТВОРЕННЫЕ В ОЗЕРНЫХ ВОДАХ
Вода является превосходным растворителем, и поэтому в озерных водах содержится много растворенных веществ. Примечательно, однако, что подавляющая масса этих веществ в большинстве озер представлена ограниченным числом соединений, а именно, положительно заряженными ионами (катионами) кальция, магния, натрия и калия и отрицательно заряженными ионами (анионами), состоящими из углерода и кислорода (бикарбонаты), серы и кислорода (сульфаты) и хлора (хлориды) (обе группы ионов перечислены в порядке убывания их содержания). Эти семь ионов составляют от 90 до 95% общего количества растворенных веществ в водах большинства озер, а их суммарная концентрация, обычно измеряющаяся в миллиграммах на литр (мг/л), характеризует соленость (минерализацию) воды. Другие вещества, например элементы питания растений (азот и фосфор) и металлы (железо и марганец), присутствуют в существенно меньших количествах, так что их концентрации измеряются в микрограммах на литр (мкг/л). В бессточных озерах испарение приводит к изменению состава солей. Озера называются хлоридными, сульфатными или карбонатными в зависимости от того, какие анионы накопились в них в наибольшем количестве под воздействием испарения или атмосферных осадков.
БОЛЬШОЕ СОЛЕНОЕ ОЗЕРО (США) по степени минерализации воды занимает следующее место после Мертвого моря.СТРАТИФИКАЦИЯ ОЗЕРНЫХ ВОД
В некоторых озерах, особенно в мелководных или подверженных воздействию сильных ветров, вообще отсутствует заметная стратификация воды. Это означает, что водные массы более или менее постоянно перемешиваются под действием ветра и довольно однородны по всем параметрам. Однако для большинства глубоких озер и тех, которые находятся в ветровой тени, характерна отчетливая стратификация водной толщи по физическим свойствам, в результате которого менее плотные воды располагаются над более плотными. Такая стратификация существенно отражается на химическом составе и биологии озер.
ЗАВИСИМОСТЬ ПЛОТНОСТИ воды от температуры.При взаимодействии солнечной энергии с водой последняя приобретает уникальное свойство: ее плотность достигает максимальной величины (1,0) при температуре ок. 4В° С, постепенно уменьшаясь как при повышении, так и при понижении температуры. В озерах солнечный свет используется растениями для фотосинтеза, а животными чтобы видеть под водой. Свет влияет также на вертикальные миграции некоторых организмов, но главный результат воздействия солнечной энергии нагревание воды. Приток энергии от Солнца значителен. Приход солнечной энергии в течение одного летнего дня может достигать 500 кал на 1 см2 поверхности озера. Часть этой энергии отражается от зеркала озера, часть рассеивается водной поверхностью в пространство, а часть поглощается водой и превращается в тепловую энергию. Эта тепловая энергия частично излучается вновь в атмосферу или затрачивается на испарение. Нагревается главным образом верхний слой воды толщиной несколько метров, поскольку радиация быстро поглощается по мере ее проникновения вглубь. Нагревание приводит к расширению воды в этом верхнем слое, отчего ее плотность уменьшается по сравнению с плотностью нижележащих холодных слоев. Нагретая вода скапливается поверх холодных и потому более плотных вод. Однако ранней весной, особенно в районах с умеренным климатом, температура воды в целом остается низкой, так что уменьшение плотности, обусловленное таким нагреванием, незначительно, и ветер перемешивает нагретую воду во всей ее толще. Позже, по мере возрастания прихода солнечной энергии, температура воды в озере в целом повышается, и снижение плотности на единицу приращения температуры становится больше, равно как увеличивается и объем нагретого приповерхностного слоя воды. В конечном счете ветер уже не способен перемешивать всю водную массу, и приход солнечной энергии сосредоточивается в нескольких верхних метрах воды. В результате озерные воды оказываются разделенными на два горизонта: верхний, менее плотный, теплый эпилимнион, и нижний, более плотный, холодный гиполимнион. Промежуточный слой, в котором происходит быстрое понижение температуры с глубиной, называется металимнионом, или термоклином. Такая стратификация определяется скорее плотностью воды, чем ее температурой. Поскольку в тропических регионах, где температура воды в целом выше, изменения плотности намного больше (см. график), и разность температур между эпилимнионом и гиполимнионом может быть значительно меньше, чем в районах с умеренным климатом. В любом случае, если плотность воды в эпилимнионе и гиполимнионе различается на величину от 0,001 до 0,003, достигается заметная устойчивая стратификация. Столь небольшие различия позволяют озерным водам противостоять перемешиванию даже под воздействием сильных ветров. В конце лета, когда дни становятся короче, а поступление солнечной радиации уменьшается, верхний слой воды остывает, становится плотнее и вскоре вместе с нижележащими водами подвергается ветровому перемешиванию, из-за чего мощность эпилимниона увеличивается. Этот процесс продолжается до тех пор, пока температура воды по всей глубине озера в результате перемешивания не сравняется с температурой гиполимниона или не станет близкой к ней. В тропических районах, где температуры постоянно выше 0В° С, такого рода циркуляция озерных вод может продолжаться на протяжении всей зимы. Однако там, где зимние температуры воздуха опускаются ниже 0В° С, озерные воды продолжают остывать и перемешиваться до установления температуры 4В° С. Если в дальнейшем поверхностные воды охлаждаются ниже этой температуры, соответствующей максимальной плотности воды, они вновь становятся легче и остаются на поверхности, создавая в озере стратификацию, которая не только зависит от плотности, но и связана обратной зависимостью с температурой. Сковывание льдом водной поверхности оказывает стабилизирующее воздействие, и такая стратификация сохраняется на протяжении всей зимы, пока весной вновь не произойдет полное перемешивание озерных вод. Таким образом, обычно в годовом цикле озер выделяются периоды летней и зимней стратификации и весеннего и осеннего перемешивания озерных вод. В большинстве озер в зависимости от климатических особенностей региона стратификация устанавливается один или два раза в год или же вообще не устанавливается на более или менее заметный срок. Однако стратификация других озер сохраняется постоянно, обычно вследствие того, что плотность глубинных вод повышается не за счет температурных различий, а скорее из-за более высокой концентрации растворенных химических соединений. Такие озера, в отличие от периодически полностью перемешиваемых, называются частично перемешиваемыми, поскольку в нижнем слое перемешивание не происходит. Такой же слой может существовать в очень глубоких озерах, как, например, Танганьика, где сезонная динамика температур воздуха протекает столь быстро, что вода в озере не успевает полностью перемешаться. Свойство озер накапливать тепло в течение лета и отдавать его зимой может оказывать существенное смягчающее воздействие на местный климат. Это особенно справедливо для крупных озер, таких как Великие. Например, оз. Мичиган ежегодно поглощает и затем отдает более 50 ккал тепла на 1 см2 своей поверхности.
ГИДРОДИНАМИКА ОЗЕР
Движение воды в озерах значительно отличается от высокоамплитудных приливо-отливных и мощных океанических течений. Только в таких крупнейших озерах, как Верхнее и Мичиган, существуют постоянные течения, но даже в них практически отсутствуют приливо-отливные колебания (их амплитуда в оз. Верхнем составляет лишь 3 см). Тем не менее под воздействием температурного градиента, впадающих водотоков и ветров в озерах совершается движение воды. Например, в конце лета, когда ночью с поверхности озер происходит отдача тепла в атмосферу, вода, охлаждаясь таким образом, становится тяжелее и опускается по направлению к гиполимниону, смешиваясь с его верхним слоем. Это один из основных механизмов разрастания эпилимниона в глубину, который приводит к полному перемешиванию воды осенью. Когда в стратифицированное озеро впадает река, либо в поверхностном слое, либо на средних глубинах возникает стоковое течение. Поверхностные течения формируются, когда воды притока имеют меньшую плотность, чем воды самого озера, как, например, летом при впадении р.Иордан в Тивериадское озеро. Среднеглубинные течения образуются, если водоток устремляется вниз к слоям, соответствующим его собственной плотности. Если одновременно происходит сток воды сквозь плотину, такое течение может распространяться на большие расстояния и переносить воды со специфическими свойствами (например, с более высоким или более низким содержанием ила) через все водохранилище. Если плотность водотока выше плотности любого слоя озерной воды, он опустится на дно и образует придонное течение. При этом возможно даже формирование подводного русла, как, например, при впадении р. Роны в Женевское озеро. Под влиянием ветра возникает несколько типов движений озерных вод. Один из них вихревое ветровое течение (или циркуляция Лэнгмюра) отчетливо выделяется на поверхности озер чередованием гладких и покрытых мелкой рябью полос. Когда дует ветер, вода перемещается по ветру и образует цилиндрические завихрения, оси которых параллельны как направлению ветра, так и поверхности озера. В одних вихрях движение происходит по часовой стрелке, а в других против часовой стрелки. В результате формируются продольные (вытянутые по ветру) зоны конвергенции (встречного и нисходящего движения воды), чередующиеся с продольными же зонами дивергенции (восходящего и расходящегося движения воды). Зоны дивергенции находятся на некотором расстоянии одна от другой (например, от 5 до 15 м). Они легко распознаются как гладкие полосы, поскольку пузыри, пыль и другие плавающие предметы собираются вдоль зон конвергенции, где вода опускается, но скорость ее недостаточна для того, чтобы увлечь этот материал за собой. Другой тип движения воды происходит, когда ветер постоянно дует над поверхностью озера. Поскольку вода перемещается по ветру, уровень воды в дальнем конце озера несколько поднимается, что приводит к формированию компенсационного течения либо вдольберегового, если озеро мелкое, либо, в более глубоких озерах, противоположно направленного и проходящего на некоторой глубине от поверхности. Однако, если ветер стихнет, в результате нагона воды к дальнему берегу компенсационное течение образуется на поверхности озера, и вода перемещается то в одну сторону, то в другую, пока эти колебания не затухнут. Такие поверхностные движения воды с переменным направлением называются поверхностными сейшами. На больших озерах их высота может превышать несколько метров. Сейши могут наносить огромный ущерб низменным прибрежным районам. К счастью, такие сейши затухают довольно быстро, и озера возвращаются в обычное состояние. Если озеро очень глубокое или имеет четкую стратификацию, может возникнуть другой тип движения воды, называемый внутренними сейшами. Когда вода перемещается по ветру, ее уровень повышается приблизительно на 1 мм на каждый погонный километр. Если ветер устойчив, то равновесие водной массы нарушается. Как у нагонного, так и сгонного берегов озера теплые менее плотные водные массы располагаются над холодными и более плотными, но у нагонного берега слой воды больше на несколько миллиметров. Чтобы уравновесить избыток давления, создаваемого этим добавочным слоем воды, более плотные придонные воды перемещаются против ветра к противоположному берегу озера, а менее плотные поверхностные воды движутся по ветру. Это приводит к перекосу термоклина: с подветренной стороны озера он приподнимается. Однако, поскольку разница плотности поверхностных и придонных вод составляет часто всего ок. 0,001 средней плотности воды, изменение соотношения этих двух типов воды, необходимое для уравновешения сдвига, превосходит величину нагона примерно в 1000 раз. Поэтому перекос термоклина очень велик по сравнению с величиной нагона: на таких крупных озерах, как Байкал, он может достигать или превышать 150 м. Когда ветер прекращается, поверхностные сейши быстро выравнивают уровень воды, однако озеро вновь оказывается в неравновесном состоянии из-за перекоса термоклина. В результате поверхностные и придонные воды продолжают свои колебания, причем термоклин, как маятник, меняет наклон то в одну, то в другую сторону, пока, наконец, это движение не затухнет, и озеро не придет в состояние внутреннего равновесия. Продолжительность таких колебаний определяется параметрами озерной котловины, но она значительно больше, чем период затухания поверхностных сейш, и, например, на оз. Байкал может достигать 30 дней. Примечательно, что в результате таких колебательных движений придонных вод происходит лишь незначительное вертикальное перемешивание, но при этом вода переносится на большие расстояния по горизонтали и может даже вступать в контакт с донными отложениями и изменять свои химические свойства. Кроме того, такие движения способствуют переносу загрязняющих веществ, сброшенных в верхнюю часть придонного слоя воды у одного берега озера, на многие километры в другое место, где, возможно, осуществляется водозабор для промышленных или бытовых нужд. При некоторых условиях внутренние сейши могут даже приводить к тому, что глубинные воды с очень низким содержанием растворенного кислорода достигают поверхности озера вблизи берега, где из-за этого происходит замор рыбы. Такое явление периодически наблюдается в Тивериадском озере с характерным 24-часовым периодом внутренних сейш, совпадающим с суточной периодичностью летних ветров.
ЖИЗНЬ ОЗЕР
В озерах обитает множество разнообразных живых организмов от вирусов и бактерий до пресноводных тюленей и акул. Эти организмы не только подвержены воздействию физических и химических свойств среды обитания, но и сами оказывают влияние на нее, особенно в стратифицированных озерах. В озерах существуют три типа местообитаний: зона контакта атмосферы и воды, зона контакта донных отложений и воды и собственно водная толща. В каждой зоне встречается набор организмов, приспособленных к специфическим условиям данного типа местообитания.
Зона контакта атмосферы и воды. Организмы, обитающие в этой зоне, носят собирательное название "нейстон" (от греч. neusts плавающий). Хотя эти организмы и интересны сами по себе, группа в целом довольно малочисленна. Наиболее известными ее представителями являются клопы-водомерки, жуки-плавунцы и личинки комаров, которые висят, прикрепившись к поверхностной пленке воды.
Зона контакта донных отложений и воды. Совокупность организмов, обитающих в этой зоне, называется бентосом (от греч. bnthos глубина). Эта группа включает как растения, так и животных. Растения, обычно известные как водные, или макрофиты, обитают на мелководьях, где им доступен свет, и образуют определенную зональность. На дне вдоль кромки озера растут полупогруженные макрофиты, включающие осоки и рогоз. Далее от берега и несколько глубже укореняются такие макрофиты, как, например, кувшинки с длинными стеблями, увенчанными плавающими листьями, через которые поглощается углекислый газ из атмосферы. Еще дальше от берега, на большей глубине произрастают полностью погруженные в воду макрофиты (например, рдесты). В Северной Америке эта группа включает множество видов, в том числе рдест курчавый (Potamogeton scirpus), уруть (Myriophyllum exalbescens) и др. Большинство этих растений (хотя и не все) укореняется в донном грунте, откуда они извлекают питательные вещества. Величина площади озера, занятой такими растениями, зависит от ряда факторов: от того, какая доля площади озера мелководна, свойств донных отложений и особенностей волновой деятельности. В то время как в некоторых озерах с крутыми подводными склонами (например, в Верхнем) макрофитов почти нет, во многих озерах меньших размеров или в больших, но мелководных (например, в оз. Нойзидлер-Зе на границе Австрии и Венгрии), дно может быть сплошь покрыто такими растениями. В тропических регионах распространены плавающие водные растения, например, эйххорния, или водяной гиацинт (Eichhornia), и пистия (Pistia), в умеренных широтах крошечная ряска (Lemna). Эти растения, особенно более крупные, могут сильно разрастаться и образовывать на озерах и водохранилищах плотный сплошной покров. Огромная площадь поверхности растений мелководий служит средой обитания для группы прикрепляющихся к ним организмов, называемой перифитоном (от греч. peri вокруг, около и phytn растение), в которую входят бактерии, простейшие и водоросли. Эти организмы делают подводные части растений скользкими на ощупь. Мелководные (литоральные) участки также дают приют разным животным организмам брюхоногим и двустворчатым моллюскам, пиявкам, личинкам насекомых, которые обитают среди растений и камней, часто встречающихся в прибрежной зоне. Глубже, за пределами литорали, макрофиты не растут. Здесь располагается сублиторальная зона, где дно постепенно опускается по направлению к глубокой части озера. В сублиторальной зоне обитают бактерии, простейшие и настоящие черви, а также похожие на них личинки разных видов насекомых. С глубиной условия обитания становятся менее благоприятными (особенно в стратифицированных озерах), и там встречаются лишь немногие приспособившиеся виды.
Водная толща. Обитающие здесь организмы делятся на две группы: нектон и планктон, т.е. мелкие организмы, которые парят в воде и в целом не способны к движению против водотока. Оба термина имеют греческие корни: nektos плавающий и plankton блуждающий.
Нектон. По особенностям питания озерные рыбы делятся на несколько групп. Рыбоядные или хищные рыбы, которые часто относятся к непромысловым видам, питаются в основном более мелкой рыбой и мальками прочих видов рыб. Планктоноядные рыбы питаются планктоном, взвешенным в водной толще, и сами часто поедаются хищными рыбами. Выделяются рыбы, питающиеся водорослями, и растительноядные рыбы, такие как карп, питающиеся растениями мелководий. Бентосоядные рыбы поедают животных, обитающих на дне водоемов, и органические частицы, падающие на дно озера.
Планктон. Термин "планктон", первоначально введенный для обозначения пассивно плавающих в верхней части толщи океанических вод организмов (растений и животных), применяется также для организмов, обитающих в озерах. Различают фитопланктон (растительные организмы) и зоопланктон (животные организмы). Все они микроскопические и имеют удельный вес, близкий удельному весу пресной воды, но если бы он был выше, планктон быстро опускался бы на дно.