Поиск в словарях
Искать во всех

Биологический энциклопедический словарь - фотосинтез

Фотосинтез

(от фото... и греч. synthesis соединение), образование клетками высших растений, водорослей и нек-рыми бактериями органич. веществ при участии энергии света. Происходит с помощью пигментов (хлорофиллов и нек-рых других), присутствующих в хлоропластах и хроматофорах клеток. В основе Ф. лежит окислит.-восстановит, процесс, в к-ром электроны переносятся от донора-восстановителя (вода, водород и др.

) к акцептору (С02, ацетат) с образованием восстановленных соединений (углеводы) и выделением О2, если окисляется Н2О (фотосинтезирующие бактерии, использующие иные, чем вода, доноры, кислород не выделяют). Преобразование энергии света в энергию химич. связей начинается в спец.

структурах реакционных центрах (РЦ). Они состоят из молекул хлорофилла а (у бактерий бактериохлорофилла, у галобактерий бактериородопсина), выполняющих функцию фотосенсибилизаторов, пигмента феофитина, связанных с ними доноров и акцепторов электронов и нек-рых других соединений. В Ф. высших растений, водорослей и цианобактерий участвуют две последоват.

фотореакции с разл. РЦ. При поглощении квантов пигментами фотосистемы II (ФС II) происходит перенос электронов от воды к промежуточному акцептору и через цепь переноса электронов к РЦ фотосистемы I (ФС I). Возбуждение ФС I сопровождается переносом электрона на вторую ступень (через промежуточный акцептор и ферредоксин к НАДФ+). В РЦ сосредоточена лишь небольшая (= 1% ) часть хлорофилла, непосредственно участвующая в преобразовании энергии поглощённых фотонов в энергию химич. связей, основная его масса и дополнит, (сопровождающие) пигменты выполняют роль светособирающей антенны.

Неск. десятков или сотен таких молекул, собранных в т. н. фотосинтетич. единицы, поглощают кванты и передают возбуждение на пигментные молекулы РЦ. Это значительно повышает скорость Ф. даже при невысоких интенсивностях света. В РЦ происходит образование первичных восстановителя и окислителя, к-рые затем инициируют цепь последоват.

окислит.-восстановит, реакций, и энергия в итоге запасается в восстановленном никотинамидадениндинуклеотидфосфате (НАДФ-Н) и АТФ (фотосинтетич. фосфорилирование) осн. продуктах фотохимич. световых стадий ф. Продукты первичных стадий Ф. высших растений и водорослей, в к-рых запасена энергия света, используются в дальнейшем в цикле фиксации СО2 и превращении углерода в углеводы (т. н. цикл Калвина). СО2 присоединяется к рибулозодифосфату с участием фермента рибулозодифосфаткарбоксилазы. Из полученного щестиуглеродного соединения образуется трёхуглеродная (С3) фосфоглицериновая к-та (ФГК), восстанавливаемая затем с использованием АТФ и НАДФ-Н до трёхуглеродных сахаров (триозофосфатов), из к-рых и образуется конечный продукт Ф.

глюкоза. Вместе с тем часть триозофосфатов претерпевает процесс конденсации и перестроек, превращаясь в рибулозомонофосфат, к-рый фосфорилируется с участием «светового» АТФ до рибулозодифосфата первичного акцептора СО2, что и обеспечивает непрерывную работу цикла. В нек-рых растениях (кукуруза, сахарный тростник и др.

) первоначальное превращение углерода идёт не через трёхуглеродные, а через четырёхуглеродные соединения (С4-растения, С4-метаболизм углерода). Акцептором СО2 в клетках мезофилла таких растений служит фос-фоенолпируват (ФЕП). Продукты его карбоксилирования яблочная или ас-парагиновая к-ты диффундируют в об-кладочные клетки сосудистых пучков, где декарбоксилируются с освобождением СО2, к-рый и поступает в цикл Калвина.

Преимущества такого «кооперативного» метаболизма обусловлены тем, что ФЕП-карбоксилаза при низкой концентрации СО2 более активна, чем рибулозодифосфаткарбоксилаза, и, кроме того, в обкладочных клетках с пониженной концентрацией О2 слабее выражено фотодыхание, связанное с окислением рибулозофосфата, и сопутствующие ему потери энергии (до 50%).

С4-растеиия привлекают внимание исследователей высокой фотосинтетич. продуктивностью. Ф.единств, процесс в биосфере, ведущий к увеличению свободной энергии биосферы за счёт внеш. источника Солнца и обеспечивающий существование как растений, так и всех гетеротрофных организмов, в т. ч. и человека. Ежегодно в результате Ф. на Земле образуется 150 млрд.

т органич. вещества и выделяется ок. 200 млрд. т свободного О2. Кругооборот О2, углерода и др. элементов, вовлекаемых в Ф., создал и поддерживает совр. состав атмосферы, необходимый для жизни на Земле. Ф. препятствует увеличению концентрации СО2 в атмосфере, предотвращая перегрев Земли (вследствие т. н. парникового эффекта). Кислород Ф.

необходим не только для жизнедеятельности организмов, но и для защиты живого от губительного коротковолнового УФ-излучения (кислородно-озоновый экран атмосферы). Запасённая в продуктах Ф. энергия (в виде разл. видов топлива) является осн. источником энергии для человечества. Предполагается, что в энергетике будущего Ф. может занять одно из первых мест в качестве неиссякаемого и незагряз-няющего среду источника энергии (создание «энергетич.

плантаций» быстрорастущих растений с последующим использованием растит, массы для получения тепловой энергии или переработки в высококачеств. топливо спирт). Не менее важна роль Ф. как основы получения продовольствия, кормов, технич. сырья. Несмотря на высокую эффективность начальных фотофизич. и фотохимич. стадий (ок. 95%), в урожай переходит лишь менее 1-2% солнечной энергии; потери обусловлены неполным поглощением света, лимитированием процесса на биохимич.

и физиол. уровнях. Обеспечение растений водой, минеральным питанием, СО2, селекция сортов с высокой эффективностью Ф., создание благоприятной для светопоглощения структуры посевов и др. пути используют в целях реализации значит, резервов фотосинтетич. продуктивности.

Для ряда культур оправдано выращивание при полном или частичном искусств, освещении, биотехнол. способы получения растит, массы (особенно одноклеточных организмов), аквакультура для нек-рых водорослей, и т. п. В связи с этим особенно актуальными становятся разработка теоретич. основ управления Ф., исследование Ф. как целостного процесса, закономерностей его регулирования и адаптации к внеш.

условиям. Схема двух фотохимических систем (ФС I и ФС II) фотосинтеза. Е окислительно-восстановит, потенциал при рН 7 (в вольтах), Z донор электронов для ФС II, P680 энергетическая ловушка и реакционный центр ФС II (светособирающая антенна этого центра включает молекулы хлорофилла а, хлорофилла b, ксантофиллы), Q первичный акцептор электронов в ФС II, АДФ аденозиндифосфат, Рнеорг. неорганич. фосфат, АТФ аденозинтрифосфат, Р700 энергетическая ловушка и реакционный центр ФС I (светособирающая антенна этого центра включает молекуллы хлорофилла а, хлорофилла b, каротин), ВВФ вещество, восстанавливающее ферредоксин.Упрощённая схема цикла Калвина пути фиксации углерода при фотосинтезе.

Продукты световых и темиовых реакций фотосинтеза. .

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое фотосинтез
Значение слова фотосинтез
Что означает фотосинтез
Толкование слова фотосинтез
Определение термина фотосинтез
fotosintez это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины