Большая Советская энциклопедия - биномиальное распределение
Связанные словари
Биномиальное распределение
распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях. Если при каждом испытании вероятность появления события равна р, причём 0 ≤ p ≤ 1, то число μ появлений этого события при n независимых испытаниях есть случайная величина, принимающая значения m = 1, 2,.., n с вероятностями
где q = 1 — p, a — биномиальные коэффициенты (отсюда название Б. р.). Приведённая формула иногда называется формулой Бернулли. Математическое ожидание и Дисперсия величины μ, имеющей Б. р., равны М (μ) = np и D (μ) = npq, соответственно. При больших n, в силу Лапласа теоремы (См. Лапласа теорема), Б. р. близко к нормальному распределению (См. Нормальное распределение), чем и пользуются на практике. При небольших n приходится пользоваться таблицами Б. р.
Лит.: Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1965.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978