Поиск в словарях
Искать во всех

Большая Советская энциклопедия - целые комплексные числа

Целые комплексные числа

гауссовы числа, числа вида а + bi, где а и b — целые числа (например, 4 — 7i). Геометрически изображаются точками комплексной плоскости, имеющими целочисленные координаты. Ц. к. ч. введены К. Гауссом в 1831 в связи с исследованиями по теории биквадратичных Вычетов. Успехи, достигнутые в теории чисел (в исследованиях по теории вычетов высших степеней, теореме Ферма и т.д.) с помощью применения Ц. к. ч., способствовали выяснению роли комплексных чисел в математике. Дальнейшее развитие теории Ц. к. ч. привело к созданию теории целых алгебраических чисел (См. Целые алгебраические числа). Арифметика Ц. к. ч. аналогична арифметике целых чисел. Сумма, разность и произведение Ц. к. ч. являются Ц. к. ч. (иными словами, Ц. к. ч. образуют числовое Кольцо).

Большая советская энциклопедия. — М.: Советская энциклопедия

1969—1978

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое целые комплексные числа
Значение слова целые комплексные числа
Что означает целые комплексные числа
Толкование слова целые комплексные числа
Определение термина целые комплексные числа
celye kompleksnye chisla это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины