Поиск в словарях
Искать во всех

Большая Советская энциклопедия - функция

Функция

I

Фу́нкция (от лат. functio — совершение, исполнение)

(философская), отношение двух (группы) объектов, в котором изменение одного из них ведёт к изменению другого. Ф. может рассматриваться с точки зрения следствий (благоприятных, неблагоприятных — дисфункциональных или нейтральных — афункциональных), вызываемых изменением одного параметра в др. параметрах объекта (функциональность), или взаимосвязи отдельных частей в рамках некоторого целого (функционирование).

Понятие Ф. введено в научный оборот Г. Лейбницем. В дальнейшем в философии интерес к Ф. как одной из фундаментальных категорий возрастал по мере распространения в различных областях науки функциональных методов исследования. В наиболее развёрнутой форме функциональный подход был реализован Э. Кассирером, который разработал теорию понятий, или «функций». Эта попытка построения теории познания на основе функционального подхода оказала определённое влияние на философские представления о Ф. Исследуются проблемы обоснованности, приемлемости и доказательности функциональных высказываний и объяснений, широко используемых в биологических и социальных науках, особенно в связи с изучением целенаправленных систем. См. также статьи Система, Системный подход и лит. при них.

Лит.: Кассирер Э., Познание и действительность. Понятие о субстанции и понятие о функции, СПБ, 1912; Юдин Б. Г., Системные представления в функциональном подходе, в сборнике: Системные исследования. Ежегодник 1973, М., 1973, с. 108—26; Frege G., Funktion und Begriff, Jena, 1891; Wright L., Functions, «Philosophical Review», 1973, v. 82, April, p. 139—68; Cummins R., Functional analysis, «The Journal of Philosophy», 1975, v. 72, № 20.

Б. Г. Юдин.

Функция в социологии. 1) Роль, которую определённый социальный институт или частный социальный процесс выполняет относительно потребностей общественной системы более высокого уровня организации или интересов составляющих её классов, социальных групп и индивидов. Например, Ф. государства, семьи, искусства и т.д. относительно общества. При этом различаются явные Ф., т. е. совпадающие с открыто провозглашаемыми целями и задачами института или социальной группы, и скрытые, латентные Ф., обнаруживающие себя лишь с течением времени и отличающиеся от провозглашаемых намерений участников этой деятельности. 2) Зависимость, которая наблюдается между различными компонентами единого социального процесса, когда изменения одной части системы оказываются производными от изменений в другой её части (например, изменения в соотношении городского и сельского населения как Ф. развития промышленности).

Марксистский поход к исследованию функций опирается на классовый анализ как самих институтов, так и соответствующих потребностей и интересов. См. также статьи Система, Структурно-функциональный анализ и литература при них.

А. Г. Здравомыслов.

II

Фу́нкция

одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Если величины x и у связаны так, что каждому значению x соответствует определённое значение у, то у называют (однозначной) функцией аргумента x. Иногда x называют независимой, а у — зависимой переменной. Записывают указанное соотношение между x и у в общем виде так: у = f (x) или у = F (x) и т. п. Если связь между x и у такова, что одному и тому же значению x соответствует вообще несколько (быть может даже бесконечное множество) значений у, то у называют многозначной Ф. аргумента x. Задать Ф. у = f (x) значит указать:

1) множество А значений, которые может принимать x (область задания Ф.),

2) множество В значений, которые может принимать у (область значения Ф.), и

3) правило, по которому значениям x из А соотносятся значения у из В. В простейших случаях областью задания Ф. служит вся числовая прямая или её отрезок аxb (или интервал а < x < b).

Правило отнесения значениям x соответствующих им значений у чаще всего задаётся формулой, устанавливающей, какие вычислительные операции надо произвести над x, чтобы найти у. Таковы, например, формулы

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое функция
Значение слова функция
Что означает функция
Толкование слова функция
Определение термина функция
funkciya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины