Поиск в словарях
Искать во всех

Большая Советская энциклопедия - функциональный анализ (математ.)

Функциональный анализ (математ.)

Функциональный анализ, часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание методов классического анализа, топологии и алгебры. Абстрагируясь от конкретных ситуаций, удаётся выделить аксиомы и на их основе построить теории, включающие в себя классические задачи как частный случай и дающие возможность решать новые задачи. Сам процесс абстрагирования имеет самостоятельное значение, проясняя ситуацию, отбрасывая лишнее и открывая неожиданные связи. В результате удаётся глубже проникнуть в сущность математических понятий и проложить новые пути исследования.

Развитие Ф. а. происходило параллельно с развитием современной теоретической физики, при этом выяснилось, что язык Ф. а. наиболее адекватно отражает закономерности квантовой механики, квантовой теории поля и т.п. В свою очередь эти физические теории оказали существенное влияние на проблематику и методы Ф. а.

1. Возникновение функционального анализа. Ф. а. как самостоятельный раздел математики сложился на рубеже 19 и 20 вв. Большую роль в формировании общих понятий Ф. а. сыграла созданная Г. Кантором теория множеств. Развитие этой теории, а также аксиоматической геометрии привело к возникновению в работах М. Фреше и Ф. Хаусдорфа метрической и более общей т. н. теоретико-множественной топологии, изучающей абстрактные пространства, т. е. множества произвольных элементов, для которых установлено тем или иным способом понятие близости.

═ Среди абстрактных пространств для математического анализа и Ф. а. оказались важными функциональные пространства (т. е. пространства, элементами которых являются функции ≈ откуда и название «Ф. а.»). В работах Д. Гильберта по углублению теории интегральных уравнений возникли пространства l2 и L2(a, b) (см. ниже). Обобщая эти пространства, Ф. Рис изучил пространства lp и Lp (a, b), а С. Банах в 1922 выделил полные линейные нормированные пространства (банаховы пространства). В 1930≈40-х гг. в работах Т. Карлемана, Ф. Риса, американских математиков М. Стоуна и Дж. Неймана была построена абстрактная теория самосопряжённых операторов в гильбертовом пространстве.

═ В СССР первые исследования по Ф. а. появились в 30-х гг.: работы

А. Н. Колмогорова (1934) по теории линейных топологических пространств;

Н. Н. Боголюбова (1936) по инвариантным мерам в динамических системах;

Л. В. Канторовича (1937) и его учеников по теории полуупорядоченных пространств, применениям Ф. а. к вычислительной математике и др.; М. Г. Крейна и его учеников (1938) по углублённому изучению геометрии банаховых пространств, выпуклых множеств и конусов в них, теории операторов и связей с различными проблемами классического математического анализа и др.; И. М. Гельфанда и его учеников (1940) по теории нормированных колец (банаховых алгебр) и др.

═ Для современного этапа развития Ф. а. характерно усиление связей с теоретической физикой, а также с различными разделами классического анализа и алгебры, например теорией функций многих комплексных переменных, теорией дифференциальных уравнений с частными производными и т.п.

═ 2. Понятие пространства. Наиболее общими пространствами, фигурирующими в Ф. а., являются линейные (векторные) топологические пространства, т. е. линейные пространства Х над полем комплексных чисел ═(или действительных чисел ), которые одновременно и топологические, причём линейные операции непрерывны в рассматриваемой топологии. Более частная, но очень важная ситуация возникает, когда в линейном пространстве Х можно ввести норму (длину) векторов, свойства которой являются обобщением свойств длины векторов в обычном евклидовом пространстве. Именно, нормой элемента x Î Х называется действительное число ||x|| такое, что всегда ||x|| ³ 0 и ||x|| = 0 тогда и только тогда, когда x = 0;

||lx || = |l| ||x||, l Î ;

||x + y|| £ ||x|| + ||y||.

═ Такое пространство называется линейным нормированным; топология в нём вводится при помощи метрики dist (x, у) = ||x ≈ у|| (т. о. считается, что последовательность xn ═x, если ||xn ≈ x|| ═0.

═ В большом числе задач возникает ещё более частная ситуация, когда в линейном пространстве Х можно ввести скалярное произведениеобобщение обычного скалярного произведения в евклидовом пространстве. Именно, скалярным произведением элементов x, у Î Х называется комплексное число (x, у) такое, что всегда (x, x) ³ 0 и (x, x) = 0 тогда и только тогда, когда x = 0;

═, l, m Î

═ При этом ═является нормой элемента x Такое пространство называется предгильбертовым. Для конструкций Ф. а. важно, чтобы рассматриваемые пространства были полными (т. е. из того, что ═для xm, xn Î X, следует существование предела , также являющегося элементом Х). Полное линейное нормированное и полное предгильбертово пространства называются, соответственно, банаховым и гильбертовым. При этом известная процедура пополнения метрического пространства (аналогичная переходу от рациональных чисел к действительным) в случае линейного нормированного (предгильбертова) пространства приводит к банахову (гильбертову) пространству.

═ Обычное евклидово пространство является одним из простейших примеров (действительного) гильбертова пространства Однако в Ф. а. играют основную роль бесконечномерные пространства, т. е. такие, в которых существует бесконечное число линейно независимых векторов. Вот примеры таких пространств, элементами которых являются классы комплекснозначных (т. е. со значениями в ) функций x (t), определённых на некотором множестве Т, с обычными алгебраическими операциями [т. e(x + y)(t) = x (t) + y (t), (lx)(t) = lx (t)]

═ Банахово пространство С (Т) всех непрерывных функций, Т ≈ компактное подмножество n-мерного пространства , норма ||x|| = ; банахово пространство Lp (T) всех суммируемых с р-й (p ³ 1) степенью функций на Т, норма ; банахово пространство lp всех последовательностей таких, что , здесь ══(множеству целых чисел), норма ||x|| =(å|xj|p)1/p; в случае p = 2 пространства l2 и L2 (T) гильбертовы, при этом, например, в L2(T) скалярное произведение ; линейное топологическое пространство D (), состоящее из бесконечно дифференцируемых функций на , каждая из которых финитна [т. е. равна нулю вне некоторого интервала (а, b)]; при этом xn ═x, если xn (t) равномерно финитны [т. е. (а, b) не зависит от n] и сходятся равномерно со всеми своими производными к соответствующим производным x (t).

═ Все эти пространства бесконечномерны, проще всего это видно для l2: векторы ej = {0,..., 0, 1, 0,...} линейно независимы.

═ С геометрической точки зрения наиболее простыми являются гильбертовы пространства Н, свойства которых больше всего напоминают свойства конечномерных евклидовых пространств. В частности, два вектора x, у Î Н называются ортогональными (x

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое функциональный анализ (математ.)
Значение слова функциональный анализ (математ.)
Что означает функциональный анализ (математ.)
Толкование слова функциональный анализ (математ.)
Определение термина функциональный анализ (математ.)
funkcionalnyy analiz (matemat.) это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины