Большая Советская энциклопедия - топология
Связанные словари
Топология
(от греч. tо́pos — место и …логия (См. ...Логия)
часть геометрии, посвященная изучению феномена непрерывности (выражающегося, например, в понятии предела). Разнообразие проявлений непрерывности в математике и широкий спектр различных подходов к её изучению привели к распадению единой Т. на ряд отделов («общая Т.», «алгебраическая Т.» и др.), отличающихся друг от друга по предмету и методу изучения и фактически весьма мало между собой связанных.
I. Общая топология
Часть Т., ориентированная на аксиоматическое изучение непрерывности, называется общей Т. Наряду с алгеброй общая Т. составляет основу современного теоретико-множественного метода в математике.
Аксиоматически непрерывность можно определить многими (вообще говоря, неравносильными) способами. Общепринята аксиоматика, основывающаяся на понятии открытого множества. Топологической структурой, или топологией, на множестве Х называют такое семейство его подмножеств, называемых открытыми множествами, что: 1) пустое множество ∅ и всё Х открыты; 2) объединение любого числа и пересечение конечного числа открытых множеств открыто. Множество, на котором задана топологическая структура, называют топологическим пространством (См. Топологическое пространство). В топологическом пространстве Х можно определить все основные понятия элементарного анализа, связанные с непрерывностью. Например, окрестностью точки x ∈ X называют произвольное открытое множество, содержащее эту точку; множество A ⊂ X называют замкнутым, если его дополнение Х А открыто; замыканием множества А называют наименьшее замкнутое множество, содержащее A; если это замыкание совпадает с X, то А называют всюду плотным в Х и т.д.
По определению, ∅ и Х являются одновременно замкнутыми и открытыми множествами. Если в Х нет других множеств, одновременно замкнутых и открытых, то топологическое пространство Х называют связным. Наглядно связное пространство состоит из одного «куска», а несвязное — из нескольких.
Любое подмножество А топологического пространства Х обладает естественной топологической структурой, состоящей из пересечений с А открытых множеств из X. Снабженное этой структурой А называют подпространством пространства X. Каждое Метрическое пространство становится топологическим, если за его открытые множества принять множества, содержащие вместе с произвольной точкой некоторую её ε-окрестность (шар радиуса ε с центром в этой точке). В частности, любое подмножество n-мерного евклидова пространства |Rn является топологическим пространством. Теория таких пространств (под названием «геометрической Т.») и теория метрических пространств включаются по традиции в общую Т.
Геометрическая Т. довольно четко распадается на две части: изучение подмножеств |Rn произвольной сложности, подчинённых тем или иным ограничениям общего характера (примером является так называемая теория континуумов, то есть связных ограниченных замкнутых множеств), и изучение способов, какими в |Rn могут быть вложены такие простые топологические пространства, как сфера, шар и т.п. (вложения в |Rn, например, сфер могут быть очень сложно устроенными).
Открытым покрытием топологического пространства Х называют семейство его открытых множеств, объединением которого является всё X. Топологическое пространство Х называют компактным (в другой терминологии —бикомпактным), если любое его открытое покрытие содержит конечное число элементов, также образующих покрытие. Классическая теорема Гейне — Бореля утверждает, что любое ограниченное замкнутое подмножество |Rn компактно. Оказывается, что все основные теоремы элементарного анализа об ограниченных замкнутых множествах (например, теорема Вейерштрасса о том, что на таком множестве непрерывная функция достигает своего наибольшего значения) справедливы для любых компактных топологических пространств. Это определяет фундаментальную роль, которую играют компактные пространства в современной математике (особенно в связи с теоремами существования). Выделение класса компактных топологических пространств явилось одним из крупнейших достижений обшей Т., имеющих общематематическое значение.
Открытое покрытие {Vβ} называют вписанным в покрытие {Uα}, если для любого β существует α такое, что Vβ ⊂ Uα. Покрытие {Vβ} называют локально конечным, если каждая точка х ∈ Х обладает окрестностью, пересекающейся только с конечным числом элементов этого покрытия. Топологическое пространство называют паракомпактным, если в любое его открытое покрытие можно вписать локально конечное покрытие. Класс паракомпактных пространств является примером классов топологических пространств, получающихся наложением так называемых условий типа компактности. Этот класс очень широк, в частности он содержит все метризуемые топологические пространства, то есть пространства X, в которых можно ввести такую метрику ρ, что Т., порожденная ρ в X, совпадает с Т., заданной в X.
Кратностью открытого покрытия называют наибольшее число k такое, что найдётся k его элементов, имеющих непустое пересечение. Наименьшее число n, обладающее тем свойством, что в любое конечное открытое покрытие топологического пространства Х можно вписать открытое покрытие кратности ≤n + 1, обозначается символом dimХ и называется размерностью X. Это название оправдано тем, что в элементарно-геометрических ситуациях dimХ совпадает с обычно понимаемой размерностью, например dim|Rn = n. Возможны и др. числовые функции топологического пространства X, отличающиеся от dimX, но в простейших случаях совпадающие с dimX. Их изучение составляет предмет общей теории размерности — наиболее геометрически ориентированной части общей Т. Только в рамках этой теории удаётся, например, дать чёткое и достаточно общее определение интуитивного понятия геометрической фигуры и, в частности, понятия линии, поверхности и т.п.
Важные классы топологических пространств получаются наложением так называемых аксиом отделимости. Примером является так называемая аксиома Хаусдорфа, или аксиома T2, требующая, чтобы любые две различные точки обладали непересекающимися окрестностями. Топологическое пространство, удовлетворяющее этой аксиоме, называется хаусдорфовым, или отделимым. Некоторое время в математической практике встречались почти исключительно хаусдорфовы пространства (например, любое метрическое пространство хаусдорфово). Однако роль нехаусдорфовых топологических пространств в анализе и геометрии постоянно растет.
Топологические пространства, являющиеся подпространствами хаусдорфовых (би) компактных пространств, называются вполне регулярными или тихоновскими. Их тоже можно охарактеризовать некоторой аксиомой отделимости, а именно: аксиомой, требующей, чтобы для любой точки x0 ∈ Х и любого не содержащего её замкнутого множества F