Поиск в словарях
Искать во всех

Большая Советская энциклопедия - гамма-спектрометр

Гамма-спектрометр

прибор для измерения спектра гамма-излучения (См. Гамма-излучение). В большинстве Г.-с. энергия и интенсивность потока -γ-квантов определяются не непосредственно, а измерением энергии и интенсивности потока вторичных заряженных частиц, возникающих в результате взаимодействия γ-излучения с веществом. Исключение составляет кристалл-дифракционный Г.-с., непосредственно измеряющий длину волны -γ-излучения (см. ниже).

Основными характеристиками Г.-с. являются эффективность и разрешающая способность. Эффективность определяется вероятностью образования вторичной частицы и вероятностью её регистрации. Разрешающая способность Г.-с. характеризует возможность разделения двух гамма-линий, близких по энергии. Мерой разрешающей способности обычно служит относительная ширина линии, получаемой при измерении монохроматического γ-излучения; количественно она определяется отношением ΔE/E, где E — энергия вторичной частицы, ΔE — ширина линии на половине её высоты (в энергетических единицах) (см. Ширина спектральных линий).

В магнитных Г.-с. вторичные частицы возникают при поглощении γ-квантов в т. н. радиаторе; их энергия измеряется так же, как и в магнитном Бета-спектрометре (рис. 1).

Величина магнитного поля Н в спектрометре и радиус ρ кривизны траектории электронов определяют энергию ε электронов, регистрируемых детектором. Если радиатор изготовлен из вещества с малым атомным номером, то вторичные электроны образуются в основном в результате комптон-эффекта (См. Комптона эффект), если радиатор изготовлен из тяжёлого вещества (свинец, уран), а энергия γ-квантов невелика, то вторичные электроны будут возникать главным образом вследствие Фотоэффекта. При энергиях hv ≥ 1,02 Мэв становится возможным образование гамма-квантами электронно-позитронных пар. На рис. 2 изображен магнитный парный Г.-с. Образование пар происходит в тонком радиаторе, расположенном в вакуумной камере. Измерение суммарной энергии электрона и позитрона позволяет определить энергию -γ-кванта. Магнитные Г.-с. обладают высокой разрешающей способностью (обычно порядка 1% или долей %), однако эффективность таких Г.-с. невелика, что приводит к необходимости применять источники γ-излучения высокой активности.

В сцинтилляционных Г.-с. вторичные электроны возникают при взаимодействии γ-квантов со сцинтиллятором (См. Сцинтилляторы) (веществом, в котором вторичные электроны возбуждают флюоресценцию). Световая вспышка преобразуется в электрический импульс с помощью фотоэлектронного умножителя (См. Фотоэлектронный умножитель) (ФЭУ, рис. 3), причём величина сигнала, создаваемого ФЭУ, пропорциональна энергии электрона и, следовательно, связана с энергией γ-кванта. Для измерения распределении сигналов по амплитуде используются специальные электронные устройства — амплитудные анализаторы (см. Ядерная электроника).

Эффективность сцинтилляционного Г.-с. зависит от размеров сцинтиллятора и при не очень большой энергии может быть близка к 100%. Однако его разрешающая способность невысокая. Для γ-квантов с энергией 662 кэв ΔE/E ≥ 6% и уменьшается с увеличением энергии E примерно как E-1/2 (подробнее см. Сцинтилляционный спектрометр).

Действие полупроводниковых Г.-с. основано на образовании γ-излучением в объёме полупроводникового кристалла (обычно Ge с примесью Li) электронно-дырочных пар. Возникающий при этом заряд собирается на электродах и регистрируется в виде электрического сигнала, величина которого определяется энергией γ-квантов (рис. 4). Полупроводниковые Г.-с. обладают весьма высокой разрешающей способностью, что обусловлено малой энергией, расходуемой на образование одной электронно-дырочной пары. Для hv = 662 кэв ΔE/E Гамма-спектрометр 0,5%. Эффективность полупроводниковых Г.-с. обычно ниже, чем сцинтилляционных Г.-с., т. к. γ-излучение в Ge поглощается слабее, чем, например, в сцинтилляционном кристалле NaJ. Кроме того, размеры используемых полупроводниковых детекторов пока ещё невелики. К недостаткам полупроводниковых Г.-с. следует отнести также необходимость их охлаждения до температур, близких к температуре жидкого азота (подробнее см. Полупроводниковый спектрометр).

Наивысшую точность измерения энергии γ-квантов обеспечивают кристалл-дифракционные Г.-с., в которых непосредственно измеряется длина волны γ-излучения. Такой Г.-с. аналогичен приборам для наблюдения дифракции рентгеновских лучей. Излучение, проходя через кристалл кварца или кальцита, отражается плоскостями кристалла в зависимости от его длины волны под тем или иным углом и регистрируется фотоэмульсией или счётчиком фотонов. Недостаток таких Г.-с. — низкая эффективность.

Для измерения спектров γ-излучения низких энергии (до 100 кэв) нередко применяются пропорциональные счётчики (См. Пропорциональный счётчик), разрешающая способность которых в области низких энергий значительно выше, чем у сцинтилляционного Г.-с. При hv > 100 кэв пропорциональные счётчики не используются из-за слишком малой эффективности. Измерение спектра γ-излучения очень больших энергий осуществляется с помощью ливневых детекторов, которые измеряют суммарную энергию частиц электронно-позитронного ливня, вызванного γ-kвантом высокой энергии. Образование ливня обычно происходит в радиаторе очень больших размеров (которые обеспечивают полное поглощение всех вторичных частиц). Вспышки флюоресценции (или черенковского излучения) регистрируются с помощью ФЭУ (см. Черенковский счётчик).

В некоторых случаях для измерения энергии γ-квантов используется процесс фоторасщепления дейтрона. Если энергия γ-кванта превосходит энергию связи дейтрона (Гамма-спектрометр 2,23 Мэв), то может произойти расщепление дейтрона на протон и нейтрон. Измеряя кинетич. энергии этих частиц, можно определить энергию падающих γ-квантов.

Лит.: Альфа-, бетаи гамма-спектроскопия, пер. с англ., под ред. К. Зигбана, в. 1, М., 1969; Методы измерения основных величин ядерной физики, пер. с англ., М., 1964; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, ч. 1).

В. П. Парфенова, Н. Н. Делягин.

Рис. 1. Схематическое изображение магнитного гамма-спектрометра. В магнитном поле Н, направленном перпендикулярно плоскости рисунка, вторичные электроны движутся по окружностям, радиусы которых определяются энергией электронов и полем Н. При изменении поля детектор регистрирует электроны разных энергий. Штриховкой показана защита из свинца.

Рис. 2. Схематическое изображение парного гамма-спектрометра. В однородном магнитном поле Н, направленном перпендикулярно плоскости чертежа, электроны и позитроны движутся по окружностям в противоположных направлениях.

Рис. 3. Схема сцинтилляционного гамма-спектрометра.

Рис. 4. Схема полупроводникового гамма-спектрометра.

Большая советская энциклопедия. — М.: Советская энциклопедия

1969—1978

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое гамма-спектрометр
Значение слова гамма-спектрометр
Что означает гамма-спектрометр
Толкование слова гамма-спектрометр
Определение термина гамма-спектрометр
gammaspektrometr это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины