Большая Советская энциклопедия - координаты (математ.)
Связанные словари
Координаты (математ.)
═ Координаты точки на плоскости. Аффинные, или общие декартовы, К. точки на плоскости получают, выбирая точку О (начало К.) и два не лежащих на одной прямой вектора ═и, исходящих из точки О Положение точки Р определяется (в выбранной системе К.) двумя К.: абсциссой
и ординатой
,
где XP параллельно OB и YP параллельно ОА. В частном случае, когда векторы ═и ═перпендикулярны и имеют одну и ту же длину, получают наиболее употребительные прямоугольные К. Если угол между ═и ═произволен, но длины этих векторов одинаковы, то получают те косоугольные К., рассмотрением которых ограничивался сам Декарт (часто только их и называют декартовыми, сохраняя для общих декартовых К. название аффинные К.).
═ Полярные К. точки на плоскости получают, выбирая точку О (полюс). выходящий из неё луч ON и единицу измерения длин. Координатами точки Р служат расстояние r = OP н угол j = ÐNOP. Чтобы получить возможность поставить в соответствие каждой точке плоскости Р пару чисел (r, j), достаточно рассматривать r и j, подчинённые неравенствам 0 £r<¥, 0£j<2. За исключением точки О, для которой r = 0, а угол j не определён, соответствие между точками Р, отличными от О, и парами (r, j), подчинёнными указанным условиям, взаимно однозначно.
═ Из других специальных систем К. на плоскости следует отметить также эллиптические координаты
═ В случае аффинных К. линии х= const образуют пучок прямых, параллельных оси Oy, а линии у = const ≈ другой пучок прямых, параллельных оси Ox, через каждую точку плоскости Р (х0, у0) проходит одна прямая первого пучка (х = x0) и одна прямая второго пучка (у = y0). В случае полярных К. линии r = const являются окружностями, а линии j = const ≈ лучами, выходящими из начальной точки О; через каждую точку Р, отличную от О, проходит ровно по одной линии каждого из двух семейств; отметки r0 и j0 этих двух линий и являются К. точки Р В более общем случае можно рассмотреть в какой-либо области G плоскости две функции точки u (Р) и u(P) такого рода, что каждая линия u (Р) = const пересекается с каждой линией семейства u(P) = const в пределах области G не более чем в одной точке. Очевидно, что в этом случае числа u (Р) и u(Р) однозначно определяют положение точки Р в области G, т. е. являются К. точки Р в этой области; линии, определяемые уравнениями u = const или u = const, называют при этом координатными линиями.
═ Криволинейные координаты на поверхности. Изложенная идея применима без всяких изменений и к введению криволинейных К. на произвольной поверхности. Например, для случая долготы j и широты q на сфере линиями j = const являются меридианы, а линиями q = const ≈ широтные круги, расположение которых всем хорошо известно из элементов географии. Криволинейные, или, как их иначе называют, гауссовы, К. на произвольной поверхности являются основным аппаратом дифференциальной геометрии поверхностей.
═ Однородные координаты на плоскости. Евклидова плоскость, дополненная бесконечно удалёнными элементами, может рассматриваться с проективной точки зрения как замкнутая поверхность (см. Проективная плоскость), на которой бесконечно удалённые точки не играют какой-либо особой роли. На всей проективной плоскости введение К., характеризующих положение точки парой чисел (u, u) с сохранением взаимной однозначности и непрерывности соответствия, невозможно. Вместо этого пользуются однородными К. При этом каждой точке ставятся в соответствие не пары, а тройки чисел (x1, x2, x3), причём двум тройкам (x1, x2, x3) и (x1▓, x2▓, x3▓) соответствует одна и та же точка только тогда, когда входящие в них числа пропорциональны, т. е. существует такой множитель l, что
x1▓ = lx1, x2▓ = lx2, x3▓ = lx3
Такие системы координат играют большую роль в геометрии.
═ Координаты точки в пространстве. Аффинные, или общие декартовы, К. в трёхмерном пространстве вводятся заданием точки О и трёх векторов, , , не лежащих в одной плоскости. Для получения К. х, у, z точки Р вектор ═представляют в виде
= xex+ уеу+zez
В простейшем случае прямоугольных К. векторы ex, еу, ez попарно перпендикулярны и имеют единичную длину. В пространстве возможны два существенно различных типа систем прямоугольных К.: правая система (где еу и ez лежат в плоскости чертежа, а ex направлен вперёд, к читателю) и левая система (где ex и ez лежат в плоскости чертежа, а еу направлен к читателю).
═ В пространстве пользуются также системами криволинейных К., общая схема которых такова: в какой-либо области G пространства рассматриваются три функции точки u (P), u(P), w(P), подчинённые условию, чтобы через каждую точку Р области G проходила одна поверхность семейства u = const, одна поверхность семейства u = const и одна поверхность семейства w = const Тем самым каждой точке ставятся в соответствие три числа (u, u, w) ≈ её К. Поверхности, определяемые уравнениями u = const, или u = const, или w = const, называют координатными.
═ В приложениях (к механике, математической физике и пр.) наиболее употребительны некоторые специальные системы криволинейных К., а именно: сферические координаты, цилиндрические координаты
═ Координаты прямой, плоскости и т. п. Принцип двойственности (см. Двойственности принцип), устанавливающий равноправность точек и прямых в геометрии двух измерений и равноправность точек и плоскостей в геометрии трёх измерений, подсказывает ту мысль, что с помощью особых К. могут быть определены положения прямых и плоскостей. Действительно, если, например, в прямоугольных К. уравнение прямой (не проходящей через начало К.) приведено к виду ux + uy + 1 = 0, то числами u и u (u = -1/a, u = -1/b, где а и b суть «отрезки», отсекаемые прямой на осях) вполне определяется положение прямой; можно принять (u, u) за К. (так называемые тангенциальные К.) прямой линии. Симметричность уравнения ux + uy + 1 = 0 относительно пар (х, у) и (u, u) является аналитическим выражением принципа двойственности. Вполне аналогично случаям n = 2 (плоскость, поверхность) и n = 3 (трёхмерное пространство) употребление К. в n-мepном пространстве.
═ Лит. см. при ст. Аналитическая геометрия
═ А. Н. Колмогоров.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978