Поиск в словарях
Искать во всех

Большая Советская энциклопедия - линия

Линия

I

Ли́ния (от лат. linea)

геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно.

1) В элементарной геометрии рассматриваются прямые Л., отрезки прямых, ломаные Л., составленные из отрезков, и некоторые кривые Л. Каждый вид кривых Л. определяется тем или иным специальным способом (например, окружность определяется как геометрическое место точек, имеющих заданное расстояние R от заданной точки О — центра окружности). Иногда в учебниках дают определение Л. как границы куска поверхности (поверхность определяется при этом как граница тела) или как траектории движущейся точки. Но в рамках элементарной геометрии эти определения не получают отчётливой формулировки.

2) Представление о Л. как траектории движущейся точки может быть сделано вполне строгим при помощи идеи параметрического представления Л. Например, вводя на плоскости прямоугольные координаты (x, у), можно параметрически задать окружность радиуса R с центром в начале координат уравнениями

x = R cos t, y = R sin t.

Когда параметр t пробегает отрезок 0 ≤ t ≤ 2π, точка (х, у) описывает окружность. Вообще, Л. на плоскости задают параметрическими уравнениями вида

x = φ (t), у = ψ(t),

где φ (t), ψ(t) — произвольные функции, непрерывные на каком-нибудь конечном или бесконечном интервале Δ числовой оси t. С каждым значением параметра t (из интервала Δ) уравнения (*) сопоставляют некоторую точку M, координаты которой определяются этими уравнениями. Л., заданная параметрическими уравнениями (*) есть множество точек, соответствующих всевозможным значениям t из Δ, при условии, что эти точки рассматриваются в определенном порядке, именно: если точка M1 соответствует значению параметра t1, а точка M2 — значению t2, то M1 считается предшествующей M2, если t1 < t2 При этом точки, отвечающие различным значениям параметра, всегда считаются различными.

Аналогично, в трёхмерном пространстве Л. задаётся параметрически тремя уравнениями вида

x = φ (t), у = ψ(t), z = χ (t),

где φ (t), ψ(t), χ (t) — произвольные функции, непрерывные на каком-нибудь интервале. В произвольном топологическом пространстве (См. Топологическое пространство) Т (которое, в частности, может быть плоскостью, поверхностью, обычным трёхмерным пространством, функциональным пространством и т. п.) Л. параметрически задают уравнением вида

P = φ (t),

где φ функция действительного переменного t, непрерывная на каком-либо интервале, значения которой суть точки пространства Т. Считают, что два параметрических представления задают одну и ту же Л., если они определяют один и тот же порядок следования её точек (в смысле, указанном выше).

В анализе и топологии рассматривают обычно случай, когда область изменения параметра t есть отрезок а t b. В этом случае условие того, чтобы два параметрических представления

Р = φ (t), a t b

P = φ1(t1), a1 t1 b1,

изображали одну и ту же Л., заключается в существовании непрерывной и строго возрастающей функции

t1 = f(t),

для которой

f(a) = a1, f(b) = b1, φ (t) = φ1[f(t)].

Такое понимание термина «Л.» наиболее естественно в большинстве вопросов анализа (например, в теории криволинейных интегралов) и механики. Так как Л. здесь рассматривается вместе с порядком, в котором пробегает её точки переменная точка М при возрастании t, то при этом естественно возникает вопрос о числе прохождений переменной точки Л. через какую-либо точку пространства. Кроме простых точек, проходимых один раз, Л. может иметь кратные точки, которые проходятся несколько раз (отвечающие различным значениям параметра).

Например, при изменении t в пределах — ∞ < t < ∞ точка с координатами

0 он может быть представлен в виде суммы конечного числа замкнутых множеств диаметра, меньшего ε, обладающих тем свойством, что никакие три из этих замкнутых множеств не имеют общей точки (см. также Размерность в геометрии). Континуум, лежащий на плоскости, будет Л. в смысле Урысона тогда и только тогда, когда он не содержит внутренних точек. Этим свойством характеризовал ранее (70-е гг. 19 в.) Л., лежащие на плоскости, Г. Кантор. Хотя определение Кантора применимо только к Л., лежащим на плоскости, иногда и общие Л. в смысле Урысона называют «канторовыми кривыми».

Л. Н. Колмогоров.

6) Ещё математики древности изучали Линии второго порядка (Эллипс, гиперболу (См. Гипербола) и параболу (См. Парабола)). Ими же был рассмотрен ряд отдельных замечательных алгебраических Л. более высокого порядка, а также некоторые трансцендентные (неалгебраические) Л. Систематическое изучение Л. и их классификация стали возможными с созданием аналитической геометрии (Р. Декарт).

Из Л. третьего порядка наиболее известны:

Декартов лист (см. рис. «Алгебраические кривые третьего порядка», № 1). уравнение в прямоугольных координатах: x3 + y3 — 3аху = 0. Впервые кривая определяется в письме Р. Декарта к П. Ферма в 1638. Полная форма кривой с наличием асимптоты, проходящей через точки ( —а, 0) и (0, —а), была определена позднее (1692) Х. Гюйгенсом и И. Бернулли. Название «декартов лист» установилось в начале 18 в.

Локон Аньези (см. рис. «Алгебраические кривые третьего порядка», № 2). Пусть имеется круг с диаметром OC = -а и отрезок BDM, построенный так, что ОВ : BD = OC : ВМ; геометрическое место точек М представляет собой локон Аньези (или верзиеру). уравнение в прямоугольных координатах: у = a3/(a2 + x2). Исследование этой Л. связано с именем итальянской женщины-математика Марии Аньези (1748).

Кубическая парабола (см. рис. «Алгебраические кривые третьего порядка», № 3). уравнение в прямоугольных координатах: у = x3.

Полукубическая парабола (см. рис. «Алгебраические кривые третьего порядка», № 4), парабола Нейля. уравнение в прямоугольных координатах: у = -сх3/2. Названа по имени английского математика У. Нейля (1657), нашедшего длину её дуги.

Строфоида (от греч. stróphos — кручёная лента и éidos — вид) (см. рис. «Алгебраические кривые третьего порядка», № 5). Пусть имеется неподвижная прямая АВ и точка С вне её на расстоянии CO = а; вокруг С вращается прямая, пересекающая АВ в переменной точке N. Если от точки N отложить по обе стороны прямой АВ отрезки NM = NM' = NO, то геометрическое место точек М и М' для всех положений вращающегося луча CN и есть строфоида. Уравнение в прямоугольных координатах:

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое линия
Значение слова линия
Что означает линия
Толкование слова линия
Определение термина линия
liniya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины