Большая Советская энциклопедия - приближённое решение
Связанные словари
Приближённое решение
дифференциальных уравнений, получение аналитических выражений (формул) или численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения.
П. р. дифференциальных уравнений в виде аналитического выражения может быть найдено методом рядов (степенных, тригонометрических и др.), методом малого параметра, последовательных приближений методом (См. Последовательных приближении метод), Ритца и Галёркина методами (См. Ритца и Галёркина методы), Чаплыгина методом. Каждый из этих методов определяет один или несколько бесконечных процессов, с помощью которых при выполнении определённых условий можно получить точное решение задачи. Для получения П. р. останавливаются на некотором шаге процесса.
Если решение ищется в виде бесконечного ряда, то за П. р. принимают конечный отрезок ряда. Например, пусть требуется найти решение дифференциального уравнения y' = f (x, у), удовлетворяющее начальным условиям у (х0) = y0, причём известно, что f (x, у) — аналитическая функция х, у в некоторой окрестности точки (х0, y0). Тогда решение можно искать в виде степенного ряда:
y (x) y (x0) = .