Большая Советская энциклопедия - резольвента
Связанные словари
Резольвента
(лат. resolvens, родительный падеж resolventis — развязывающий, решающий, от resolvo — развязываю, решаю)
(математическая), разрешающее уравнение, разрешающая функция (ядро) или разрешающие операторы.
В алгебре термин «Р.» употребляется в нескольких смыслах. Так, под Р. алгебраического уравнения f(x) = 0 степени n понимают такое алгебраическое уравнение g(x) = 0 с коэффициентами, рационально зависящими от коэффициентов f(x), что знание корней этого уравнения позволяет найти корни данного уравнения f(x) = 0 в результате решения более простых уравнений, степеней не больших n. Например, уравнение
является одной из (кубической) Р. уравнения четвёртой степени
x4 + a1x3 + a2x2 + a3x + a4 = 0. (1)
Если υ1, υ2, υ3 — корни этой Р., то корни x1, x2, x3, x4 уравнения (1) могут быть найдены решением квадратных уравнений σ2 — ukσ + a4 = 0, k = 1, 2, 3. Именно, если ξk, ηk — корни этих квадратных уравнений, то x1x2 = ξ1, x3x4 = η1, x1x3 = ξ2, x2x4 = η2, x1x4 = ξ3, x2x3 = η3 и x12 = ξ1ξ2/η3 и т. д. Резольвентой Галуа уравнения f(x) = 0 называется такое неприводимое над данным полем алгебраическое уравнение g(x) = 0 (см. Галуа теория), что в результате присоединения одного из его корней к этому полю получается поле, содержащее все корни уравнения f(x) = 0.
В несколько ином смысле термин «Р.» употребляется в т. н. проблеме резольвент Гильберта и Чеботарева.
В теории интегральных уравнений (См. Интегральные уравнения) под Р. (разрешающим ядром) уравнения