Большая Советская энциклопедия - термоэмиссионный преобразователь энергии
Связанные словари
Термоэмиссионный преобразователь энергии
(ТЭП)
термоэлектронный преобразователь энергии, термоионный преобразователь энергии, устройство для непосредственного преобразования тепловой энергии в электрическую на основе явления термоэлектронной эмиссии (См. Термоэлектронная эмиссия). Простейший ТЭП состоит из двух электродов (катода, или эмиттера, и анода, или коллектора, изготовляемых из тугоплавких металлов, обычно Mo, Re, W), разделённых вакуумным промежутком (рис. 1). К эмиттеру от источника тепла подводится тепловая энергия, достаточная для возникновения заметной термоэлектронной эмиссии с поверхности металла. Электроны, преодолевая межэлектродное пространство (несколько десятых долей мм), попадают на поверхность коллектора, создавая на нём избыток отрицательных зарядов и увеличивая его отрицательный потенциал. Если непрерывно обеспечивать подвод тепла к эмиттеру и соответствующее охлаждение коллектора (который получает тепло от достигающих его электронов), то во внешней цепи будет поддерживаться электрический ток и таким образом совершаться работа. Так как ТЭП представляет собой по существу тепловую машину, рабочим телом которой служит «электронный газ» (электроны «испаряются» с эмиттера — нагревателя и «конденсируются» на коллекторе — холодильнике), то кпд ТЭП не может превосходить кпд Карно цикла.
Напряжение, развиваемое ТЭП (0,5— 1 в), — порядка контактной разности потенциалов (См. Контактная разность потенциалов), но меньше её на величину падения напряжения на межэлектродном зазоре и потерь напряжения на коммутационных проводах (рис. 2). Максимальная плотность тока, генерируемого ТЭП, ограничена эмиссионной способностью эмиттера и может достигать нескольких десятков а 1 см2 поверхности. Для получения оптимальных величин работы выхода (См. Работа выхода) эмиттера (2,5—2,8 эв) и коллектора (1,0—1,7 эв) и для компенсации объёмного заряда электронов, образующегося вблизи электродов, в зазор между ними обычно вводят легко ионизируемые пары Cs. Положительные ионы цезия образуются при столкновении атомов Cs с быстрыми и тепловыми электронами как на горячем катоде (Поверхностная ионизация), так и в межэлектродном объёме (вследствие либо однократного соударения атомов Cs с быстрыми и тепловыми электронами, либо ступенчатой ионизации, при которой в результате 1-го соударения с электроном атом Cs переходит в возбуждённое состояние, а при последующих — ионизируется). В последнем случае ТЭП работает в так называемое дуговом режиме — наиболее употребительном. При используемых в современных ТЭП температурах электродов (1700—2000 К на катоде и 800—1100 К на аноде) их удельная мощность (в расчёте на 1 см2 поверхности катода) достигает десятков вт, а кпд может превышать 20%.
По роду источника тепла различают ядерные (реакторные и радиоизотопные), солнечные и газопламенные ТЭП. В ядерных ТЭП используется тепло, выделяющееся в результате реакции ядерного деления (в реакторных ТЭП) или распада радиоактивного изотопа (в радиоизотопных). В 1970 в СССР создан первый в мире термоэмиссионный преобразователь-реактор «Топаз» электрической мощностью около 10 квт. В солнечных ТЭП нагрев эмиттера осуществляется за счёт тепловой энергии солнечного излучения (с применением Гелиоконцентраторов). Газопламенные ТЭП работают на тепле, выделяющемся при сжигании органического топлива.
Важные преимущества ТЭП по сравнению с традиционными электромашинными преобразователями — отсутствие в них движущихся частей, компактность, высокая надёжность, возможность эксплуатации без систематического обслуживания. В настоящее время (середина 70-х гг.) достигнут ресурс непрерывной работы одиночного ТЭП свыше 40000 ч. Перспективно использование ТЭП в качестве высокотемпературного звена многоступенчатых преобразователей энергии, например, в сочетании с термоэлектрическими преобразователями, работающими при более низких температурах. В СССР, США, Франции и ряде др. стран ведутся интенсивные работы по созданию ТЭП, пригодных для массового промышленного использования.
Лит.: Елисеев В. Б., Пятницкий А. П., Сергеев Д. И., Термоэмиссионные преобразователи энергии, М., 1970; Термоэмиссионные преобразователи и низкотемпературная плазма, М., 1973; Технология термоэмиссионных преобразователей. Справочник, под ред. С. В. Рябикова, М., 1974.
Н. С. Лидоренко.
Рис. 1. Схема термоэмиссионного преобразователя: К — катод, или эмиттер; А — анод, или коллектор; R — внешняя нагрузка; QК — тепло, подводимое к катоду; QА — тепло, отводимое от анода; 1 — атомы цезия; 2 — ионы цезия; 3 — электроны.
Рис. 2. Распределение потенциальной энергии электронов в межэлектродном зазоре при недостаточной концентрации ионов цезия (1), в условиях компенсации объёмного заряда (2) и в дуговом режиме (3): УФК и УФА — уровни Ферми катода (эмиттера) и анода (коллектора); E — энергия; EК и EА — работа выхода катода и анода; ΔV3, ΔVпр и V — падение напряжения соответственно на межэлектродном зазоре, на коммутационных приводах и во внешней цепи; е — заряд электрона; d — межэлектродное расстояние.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978