Поиск в словарях
Искать во всех

Большая Советская энциклопедия - ультрафиолетовое излучение

Ультрафиолетовое излучение

(от Ультра... и фиолетовый)

ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн λ 400—10 нм. Вся область У. и. условно делится на ближнюю (400—200 нм) и далёкую, или вакуумную (200—10 нм); последнее название обусловлено тем, что У. и. этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Ближнее У. и. открыто в 1801 немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное У. и. обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885—1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал У. и. с длиной волны до 25 нм (1924). К 1927 был изучен весь промежуток между вакуумным У. и. и рентгеновским излучением.

Спектр У. и. может быть линейчатым, непрерывным или состоять из полос в зависимости от природы источника У. и. (см. Спектры оптические). Линейчатым спектром обладает УФ-излучение атомов, ионов или лёгких молекул (например, H2). Для спектров тяжёлых молекул характерны полосы, обусловленные электронно-колебательно-вращательными переходами молекул (см. Молекулярные спектры). Непрерывный спектр возникает при торможении и рекомбинации электронов (см. Тормозное излучение).

Оптические свойства веществ в ультрафиолетовой области спектра значительно отличаются от их оптических свойств в видимой области. Характерной чертой является уменьшение прозрачности (увеличение коэффициента поглощения) большинства тел, прозрачных в видимой области. Например, обычное стекло непрозрачно при λ < 320 нм; в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий и некоторые др. материалы. Наиболее далёкую границу прозрачности (105 нм) имеет фтористый литий. Для λ 290 нм) достигает земной поверхности. Более коротковолновое У. и. поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30—200 км от поверхности Земли, что играет большую роль в атмосферных процессах. У. и. звёзд и др. космических тел, кроме поглощения в земной атмосфере, в интервале 91,2—20 нм практически полностью поглощается межзвёздным водородом.

Приёмники У. и. Для регистрации У. и. при λ>230 нм используются обычные фотоматериалы. В более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность У. и. вызывать ионизацию и фотоэффект: Фотодиоды, ионизационные камеры (См. Ионизационная камера), счётчики фотонов, фотоумножители и др. Разработан также особый вид фотоумножителей — каналовые электронные умножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрические изображения в У. и. и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании У. и. также используют различные люминесцирующие вещества, преобразующие У. и. в видимое. На этой основе созданы приборы для визуализации изображений в У. и.

Применение У. и. Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов (см. Ультрафиолетовая спектроскопия, Вакуумная спектроскопия). На фотоэффекте, вызываемом У. и., основана Фотоэлектронная спектроскопия. У. и. может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и т.д., см. Фотохимия). Люминесценция под действием У. и. используется при создании люминесцентных ламп (См. Люминесцентная лампа), светящихся красок, в люминесцентном анализе (См. Люминесцентный анализ) и люминесцентной дефектоскопии (См. Люминесцентная дефектоскопия). У. и. применяется в криминалистике для установления идентичности красителей, подлинности документов и т.п. В искусствоведении У. и. позволяет обнаружить на картинах не видимые глазом следы реставраций (рис. 2). Способность многих веществ к избирательному поглощению У. и. используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.

Лит.: Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., М., 1952; Лазарев Д. Н., Ультрафиолетовая радиация и ее применение, Л. — М., 1950; Samson I. A. R., Techniques of vacuum ultraviolet spectroscopy, N. Y. — L. — Sydney, [1967]; Зайдель А. Н., Шрейдер Е. Я., Спектроскопия вакуумного ультрафиолета, М., 1967; Столяров К. П., Химический анализ в ультрафиолетовых лучах, М. — Л., 1965; Бейкер А., Беттеридж Д., Фотоэлектронная спектроскопия, пер. с англ., М., 1975.

А. Н. Рябцев.

Биологическое действие У. и. При действии на живые организмы У. и. поглощается верхними слоями тканей растений или кожи человека и животных. В основе биологического действия У. и. лежат химические изменения молекул биополимеров (См. Биополимеры). Эти изменения вызываются как непосредственным поглощением ими квантов излучения, так и (в меньшей степени) образующимися при облучении радикалами воды и др. низкомолекулярных соединений.

На человека и животных малые дозы У. и. оказывают благотворное действие — способствуют образованию витаминов группы D (см. Кальциферолы), улучшают иммунобиологические свойства организма. Характерной реакцией кожи на У. и. является специфическое покраснение — Эритема (максимальным эритемным действием обладает У. и. с λ = 296,7 нм и λ = 253,7 нм), которая обычно переходит в защитную пигментацию (Загар). Большие дозы У. и. могут вызывать повреждения глаз (фотоофтальмию) и ожог кожи. Частые и чрезмерные дозы У. и. в некоторых случаях могут оказывать канцерогенное действие на кожу.

В растениях У. и. изменяет активность ферментов и гормонов, влияет на синтез пигментов, интенсивность фотосинтеза и фотопериодической реакции. Не установлено, полезны ли и тем более необходимы ли для прорастания семян, развития проростков и нормальной жизнедеятельности высших растений малые дозы У. и. Большие дозы У. и., несомненно, неблагоприятны для растений, о чём свидетельствуют и существующие у них защитные приспособления (например, накопление определённых пигментов, клеточные механизмы восстановления от повреждений).

На микроорганизмы и культивируемые клетки высших животных и растений У. и. оказывает губительное и мутагенное действие (наиболее эффективно У. и. с λ в пределах 280—240 нм). Обычно спектр летального и мутагенного действия У. и. примерно совпадает со спектром поглощения нуклеиновых кислот (См. Нуклеиновые кислоты) ДНК и РНК (рис. 3, А), в некоторых случаях спектр биологического действия близок к спектру поглощения белков (рис. 3, Б). Основная роль в действии У. и. на клетки принадлежит, по-видимому, химическим изменениям ДНК: входящие в её состав пиримидиновые основания (главным образом Тимин) при поглощении квантов У. и. образуют димеры, которые препятствуют нормальному удвоению (репликации (См. Репликация)) ДНК при подготовке клетки к делению. Это может приводить к гибели клеток или изменению их наследственных свойств (мутациям (См. Мутации)). Определённое значение в летальном действии У. и. на клетки имеют также повреждение биолеских мембран и нарушение синтеза различных компонентов мембран и клеточной оболочки.

Большинство живых клеток может восстанавливаться от вызываемых У. и. повреждений благодаря наличию у них систем Репарации. Способность восстанавливаться от повреждений, вызываемых У. и., возникла, вероятно, на ранних этапах эволюции и играла важную роль в выживании первичных организмов, подвергавшихся интенсивному солнечному ультрафиолетовому облучению.

По чувствительности к У. и. биологические объекты различаются очень сильно. Например, доза У. и., вызывающая гибель 90% клеток, для разных штаммов кишечной палочки равна 10, 100 и 800 эрг/мм2, а для бактерий Micrococcus radiodurans — 7000 эрг/мм2 (рис. 4, А и Б). Чувствительность клеток к У. и. в большой степени зависит также от их физиологического состояния и условий культивирования до и после облучения (температура, состав питательной среды и др.). Сильно влияют на чувствительность клеток к У. и. мутации некоторых Генов. У бактерий и дрожжей известно около 20 генов, мутации которых повышают чувствительность к У. и. В ряде случаев такие гены ответственны за восстановление клеток от лучевых повреждений. Мутации других генов нарушают синтез белка и строение клеточных мембран, тем самым повышая радиочувствительность негенетических компонентов клетки. Мутации, повышающие чувствительность к У. и., известны и у высших организмов, в том числе у человека. Так, наследственное заболевание — пигментная Ксеродерма обусловлено мутациями генов, контролирующих темновую репарацию.

Генетические последствия облучения У. и. пыльцы высших растений, клеток растений и животных, а также микроорганизмов выражаются в повышении частот мутирования генов, хромосом и плазмид (См. Плазмиды). Частота мутирования отдельных генов, при действии высоких доз У. и., может повышаться в тысячи раз по сравнению с естественным уровнем и достигает нескольких процентов. В отличие от генетического действия ионизирующих излучений, мутации генов под влиянием У. и. возникают относительно чаще, чем мутации хромосом (См. Хромосомы). Благодаря сильному мутагенному эффекту У. и. широко используют как в генетических исследованиях, так и в селекции растений и промышленных микроорганизмов, являющихся продуцентами антибиотиков, аминокислот, витаминов и белковой биомассы. Генетическое действие У. и. могло играть существенную роль в эволюции живых организмов. О применении У. и. в медицине см. Светолечение.

Лит.: Самойлова К. А., Действие ультрафиолетовой радиации на клетку, Л., 1967; Дубров А. П,, Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения, М., 1968; Галанин Н. Ф., Лучистая энергия и ее гигиеническое значение, Л., 1969; Смит К., Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972; Шульгин И. А., Растение и солнце, Л., 1973; Мясник М. Н., Генетический контроль радиочувствительности бактерий, М., 1974.

В. И. Корогодин.

Рис. 1. Зависимость коэффициента отражения r слоя алюминия от длины волны λ, измеренная сразу после напыления в ультравысоком вакууме (1) и после хранения на открытом воздухе в течение года (2).

Рис. 2. Спектры действия ультрафиолетового излучения на некоторые биологические объекты: А — возникновение мутаций в пыльцевых зернах кукурузы (кружки) и спектр поглощения нуклеиновых кислот (сплошная кривая); Б — иммобилизация (прекращение движения) парамеций (кружки) и спектр поглощения альбумина (сплошная кривая).

Рис. 3. Зависимость выживаемости разных бактерий от дозы ультрафиолетового излучения: А — кишечная палочка, длина волны 253,7 нм; 1, 2 — мутантные штаммы; 3 — дикий тип; Б — M. radiodurans , длина волны 265,2 нм.

Большая советская энциклопедия. — М.: Советская энциклопедия

1969—1978

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое ультрафиолетовое излучение
Значение слова ультрафиолетовое излучение
Что означает ультрафиолетовое излучение
Толкование слова ультрафиолетовое излучение
Определение термина ультрафиолетовое излучение
ultrafioletovoe izluchenie это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины